Impacto de los derivados de la caña de azúcar sobre las propiedades físico-mecánicas del hormigón
DOI:
https://doi.org/10.35381/i.p.v3i5.1367Palabras clave:
Ingeniería civil, construcción de viviendas, diseño arquitectónico. (Palabras tomadas de Tesauro UNESCO).Resumen
El presente artículo tiene como objetivo evaluar el comportamiento físico mecánico del hormigón con productos derivados de la caña de azúcar tales como (1) la ceniza de bagazo de caña de azúcar (CBCA) como reemplazo porcentual y gradual del cemento; y (2) la fibra de bagazo de caña de azúcar (FBCA) como reemplazo porcentual respecto al peso del agregado. Se revisó 46 artículos científicos referidos al tema entre la base de datos SCOPUS y SciELO, cuyos resultados encontrados fueron que al incorporar entre el 20% al 30% de CBCA incinerada entre 600ºC y 800 ºC mejora sustancialmente la trabajabilidad, resistencia a la compresión y flexión; por otra parte la incorporación de FBCA tratada (lavada y sumergida en hidróxido de calcio) en porcentajes que van del 0.5% al 1.5% respecto al peso del agregado, mejora también las propiedades de resistencia principalmente.
Descargas
Citas
Abdolkarim Abbasi, & Amin Zargar. (2013). Using bagasse ash in concrete as Pozzolan, Middle-East. Journal of Scientific Research, 13(1990-9233 ), 716-719.
Abdulkadir, T.S., Oyejobi, D.O, & Lawal, A.A. (2014). Evaluation of sugarcane bagasse ash as a replacement for cement in concrete works. ACTA TEHNICA CORVINIENSIS – Bulletin of Engineering, 7, 71-76.
Almeida, F., Sales , A., Moretti , J., & Mendes, P. (2015). Sugarcane bagasse ash sand (SBAS): Brazilian agroindustrial by-product for use in mortar. Construction and Building Materials, 82, 31-38. doi:http://dx.doi.org/10.1016/j.conbuildmat.2015.02.039
Amin, N.-u. (2011). Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity. Journal of Materials, 23, 717-720.
Andrade Neto , J., Santos de França, M., Santana de Amorim Júnior, N., & Véras Ribeiro, D. (2020). Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Construction and Building Materials, 266, 1-13.
Asma , A., NasirShafiq, MuhdFadhilNuruddin , & Fareed , A. (2014). Compressive strength and microstructure of sugar cane bagasse ash concrete, Research Journal of Applied Sciences. Engineering and Technology, 7, 2569-2577.
Bahurudeen, A., Wani, K., Abdul Basit, M., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. American Society of Civil Engineers., 1-11. doi:10.1061/(ASCE)MT.1943-5533.0001361
Bayapureddy, Y., Muniraj, K., & Gangireddy Mutukuru, M. (2020). Sugarcane bagasse ash as supplementary cementitious material in cement composites: strength, durability, and microstructural analysis. Journal of the Korean Ceramic Society, 1-7. doi:https://doi.org/10.1007/s43207-020-00055-8
Berenguer , Nogueira, Marden, Barreto, Helene, & De Melo. (2018). La influencia de las cenizas de bagazo de caña de azúcar como reemplazo parcial del cemento en la resistencia a la compresión de los morteros. Revista ALCONPAT, 8(1), 30-37. Obtenido de http://dx.doi.org/10.21041/ra.v8i1.187
Boontima , B., Noomhorm , A., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2014). Mechanical Properties of Sugarcane Bagasse Fiber-Reinforced Soy Based Biocomposites. Springer Science+Business Media, 1, 1-10. doi:DOI 10.1007/s10924-014-0679-2
Cabrera-Madrid, J., Escalante-García, J., & Castro-Borges, P. (2016). Compression resistance of concretes with blast furnace slag. Re-visited state-of-the-art. ALCONPAT Journal, 64-83. Obtenido de http://dx.doi.org/10.21041/ra.
Chindaprasirt, P., Sujumnongtokul, P., & Posi, P. (2019). Durability and Mechanical Properties of Pavement Concrete Containing Bagasse Ash. ScienceDirect, 1612-1626.
Chusilp, N., Jaturapitakkul, C., & Kiattikomol, K. (2009). Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Construction and Building Materials, 23, 3523-3531. doi:10.1016/j.conbuildmat.2009.06.046
Deepika, S., Anand, G., Bahurudeen, A., & Santhanam, M. M. (2017). Construction Products with Sugarcane Bagasse Ash Binder. Materials in Civil Engineering, 1-10. doi:10.1061/(ASCE)MT.1943-5533.0001999.
Duc, H., Yeong, N., & My Ngoc, T. (2018). Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. (Elsevier, Ed.) Construction and Building Materials, 138-147. Obtenido de https://doi.org/10.1016/j.conbuildmat.2018.07.029
Farnaz , B., Arjumend , M., & Mehmood , A. (2019). Characterization of Sugarcane Bagasse Ash as Pozzolan and Infuence on Concrete Properties. Science and Engineering, 1-10. Obtenido de https://doi.org/10.1007/s13369-019-04301-y
G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, & E.M.R. Fairbairn. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement & Concrete Composites, 30, 410-418. doi:10.1016/j.cemconcomp.2008.01.001
Hernández-Olivares, F., Medina-Alvarado, R. E., Burneo-Valdivieso, X. E., & Zúñiga-Suárez, A. R. (2020). Short sugarcane bagasse fibers cementitious composites for building construction. Construction and Building Materials, 247(118451), 1-17.
Huertas, L., Martinez, P., & Espitia, M. (2019). Analysis of compression resistance property of concrete modified with sugarcane (Saccharum Officinarum) bagasse fibers). Instituto Español de Estudios Estratégicos (IEEE), 1-4.
Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608-617. doi:https://doi.org/10.1016/j.conbuildmat.2018.05.037
K. Ganesan, K. Rajagopal , & K. Thangavel. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement & Concrete Composites, 29, 515-524. doi: 10.1016/j.cemconcomp.2007.03.001
K.Rekha, & R.Thenmozhi. (2014). Evaluation of Mechanical properties of BAGcrete. Advanced Materials Research , 984-985, 693-697.
Lakshmi Priya, K., & Ragupathy, R. (2016). Effect of sugarcane bagasse ash on strength properties of concrete. International Journal of Research in Engineering and Technology, 159-164.
Lathamaheswari, Kalaiyarasan, V., & Mohankumar, G. (2017). Study on Bagasse Ash As Partial Replacement of Cement in Concreto. International Journal of Engineering Research and Development, 1-6.
Loh, Y., Sujan, D., Rahman, M., & Das, C. (2013). Sugarcane bagasse -The future composite material A Literature Review. Resources Conservation and Recycling, 75, 14-22.
Lorca Aranda, P. (2014). Efecto de la adición de Hidróxido Cálcico sobre mezclas con alta sustitución de cemento por ceniza volante. Tesis Doctoral. Universidad Politécnica de Valencia, España.
Manjunath , R., & Rahul, M. (2019). Properties of Sugarcane Bagasse Ash Blended Self-Compacting Concrete Mixes. Sustainable Construction, 265-274. doi:https://doi.org/10.1007/978-981-13-3317-0_24
Montakarntiwong, K., Chusilp, N., Tangchirapat, W., & Jaturapitakkul, C. (2013). Strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry. Materia ls and Design, 413-420.
Muhamad , A., Mohammed , A., Zulkifli , A., Nazrin , D., Nooraina , M., Siti Khadijah , C., . . . Mohamad , Y. (2013). Usage of Sugarcane Bagasse as Concrete Retarder. International Journal of Business and Technopreneurship, 3, 495-503.
Murugesan, Vidjeapriya, & Bahurudee. (2020). Sugarcane Bagasse Ash-Blended Concrete for Effective Resource Utilization Between Sugar and Construction Industries. Society for Sugar Research & Promotion , 1-12. Obtenido de https://doi.org/10.1007/s12355-020-00794-2
Nasir, S., Asma, A. H., Muhd, F. N., & Hashem , A. (2016). Effects of sugarcane bagasse ash on the properties of concreto. Institution of Civil Engineers, 1-10. Obtenido de http://dx.doi.org/10.1680/jensu.15.00014
Osorio Saraz, J., Varón Aristizabal, F., & Herrera Mejía, J. (2007). Comportamiento mecánico del concreto reforzado con fibra de bagazo de caña de azúcar. DYNA, 69-79.
Otoko, G. (2014). Use of bagasse ash as partial replacement of cement in concrete. International Journal of Innovative Research & Development,, 3, 285-289.
Rajasekar, A., Arunachalam, K., Kottaisamy, M., & Saraswathy, V. (2018). Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Construction and Building Materials, 350-356. Obtenido de https://doi.org/10.1016/j.conbuildmat.2018.03.140
Ribeiro, B., Yamamoto, T., & Yamashiki, Y. (2020). A Study on the Reduction in Hydration Heat and Thermal Strain of Concrete with Addition of Sugarcane Bagasse Fiber. Journal materials, 13, 1-14.
Ruano, G., Bellomo, F., López, G., Bertuzzi, A., Nallim, L., & Oller, S. (2020). Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Construction and Building Materials, 1-9.
Sajjad , A. M., Jamaluddin , Wan, I., Abd , H. A., Abdul , A., Samiullah , S., & Nizakat , A. (2017). Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Publishing Ltd, 1-9. Obtenido de https://doi.org/10.1088/1757-899X/271/1/012001
Sales, A., & Lima, S. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Management, 30, 1114-1122. doi:10.1016/j.wasman.2010.01.026
Somna , R., Jaturapitakkul , C., Rattanachu, P., & Chalee , W. (2012). Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Materials and Design, 36, 597-603. doi:10.1016/j.matdes.2011.11.065
Sounthararajan, V., Sivasankar, S., Vinodh Kumar, R., Modak, N., & Dilli Bai, K. (2019). Valorization of Specially Designed Concrete by Using Sugarcane Bagasse Ash and Inducing the Special Benefits of Waste Tin Fiber Reinforced Concrete. International Journal of Innovative Technology and Exploring Engineering, 220-224. doi:10.35940/ijitee.L3589.1081219
Sundaravadivel , D., & Mohana , R. (2018). Recent studies of sugarcane bagasse ash in Concrete and mortar: a review. Revista Internacional de Ingeniería, Investigación y Tecnología , 7, 306-312.
Tri Hatmoko, J., & Suryadharma, H. (2019). Behavior of bagasse ash-calcium carbide residue stabilized soil with polyester fiber inclusion. Materials Science and Engineering, 1-12. doi:10.1088/1757-899X/620/1/012066
V.M. Sounthararajan, Y Stalin Jose, & ,S. Sivasankar . (2019). Synergetic Effect of Sugarcane Bagasse Ash with Low Modulus of Fiber Reinforced Concrete. International Journal of Recent Technology and Engineering (IJRTE), 7171-7175.
Wegdan W. , E.-N. (2020). Applicability of Using Natural Fibers for Reinforcing Concrete. Materials Science and Engineering, 809, 1-7. doi:10.1088/1757-899X/809/1/012018
Xiong, W. (2018). Bagasse composites:A review of material preparation, attributes,and affecting factors. Thermoplastic Composite Materials, 31(8), 1112-1146.
Y.R.Loh, D.Sujan, M.E.Rahman, & C.A.Das. (2013). Sugarcane bagasse-The future composite material :A literature review. Resources, conservation and recycling, 14-22.
Publicado
Cómo citar
Número
Sección
Licencia
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://fundacionkoinonia.com.ve/ojs/index.php/ingeniumetpotentia/oai