Impact of sugarcane derivatives on the physical-mechanical properties of concrete

Authors

DOI:

https://doi.org/10.35381/i.p.v3i5.1367

Keywords:

Civil engineering, housing construction, building design. (Words taken from UNESCO Thesaurus).

Abstract

This Article aims to assess the mechanical physical behaviour of concrete with sugarcane products such as (1) sugarcane bagasse ash (CBCA) as a percentage and gradual replacement of cement; and (2) sugarcane bagasse fiber (FBCA) as a percentage replacement relative to the weight of the aggregate. 46 scientific articles on the subject were reviewed between the SCOPUS database and SciELO, the results of which were found to incorporate between 20% and 30% of CBCA incinerated between 600oC and 800oC substantially improves workability, compressure resistance and flexion; on the other hand the incorporation of treated FBCA (washed and submerged in calcium hydroxide) in percentages ranging from 0.5% to 1.5% compared to the weight of the aggregate, also improves resistance properties mainly.

Downloads

Download data is not yet available.

References

Abdolkarim Abbasi, & Amin Zargar. (2013). Using bagasse ash in concrete as Pozzolan, Middle-East. Journal of Scientific Research, 13(1990-9233 ), 716-719.

Abdulkadir, T.S., Oyejobi, D.O, & Lawal, A.A. (2014). Evaluation of sugarcane bagasse ash as a replacement for cement in concrete works. ACTA TEHNICA CORVINIENSIS – Bulletin of Engineering, 7, 71-76.

Almeida, F., Sales , A., Moretti , J., & Mendes, P. (2015). Sugarcane bagasse ash sand (SBAS): Brazilian agroindustrial by-product for use in mortar. Construction and Building Materials, 82, 31-38. doi:http://dx.doi.org/10.1016/j.conbuildmat.2015.02.039

Amin, N.-u. (2011). Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity. Journal of Materials, 23, 717-720.

Andrade Neto , J., Santos de França, M., Santana de Amorim Júnior, N., & Véras Ribeiro, D. (2020). Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Construction and Building Materials, 266, 1-13.

Asma , A., NasirShafiq, MuhdFadhilNuruddin , & Fareed , A. (2014). Compressive strength and microstructure of sugar cane bagasse ash concrete, Research Journal of Applied Sciences. Engineering and Technology, 7, 2569-2577.

Bahurudeen, A., Wani, K., Abdul Basit, M., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. American Society of Civil Engineers., 1-11. doi:10.1061/(ASCE)MT.1943-5533.0001361

Bayapureddy, Y., Muniraj, K., & Gangireddy Mutukuru, M. (2020). Sugarcane bagasse ash as supplementary cementitious material in cement composites: strength, durability, and microstructural analysis. Journal of the Korean Ceramic Society, 1-7. doi:https://doi.org/10.1007/s43207-020-00055-8

Berenguer , Nogueira, Marden, Barreto, Helene, & De Melo. (2018). La influencia de las cenizas de bagazo de caña de azúcar como reemplazo parcial del cemento en la resistencia a la compresión de los morteros. Revista ALCONPAT, 8(1), 30-37. Obtenido de http://dx.doi.org/10.21041/ra.v8i1.187

Boontima , B., Noomhorm , A., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2014). Mechanical Properties of Sugarcane Bagasse Fiber-Reinforced Soy Based Biocomposites. Springer Science+Business Media, 1, 1-10. doi:DOI 10.1007/s10924-014-0679-2

Cabrera-Madrid, J., Escalante-García, J., & Castro-Borges, P. (2016). Compression resistance of concretes with blast furnace slag. Re-visited state-of-the-art. ALCONPAT Journal, 64-83. Obtenido de http://dx.doi.org/10.21041/ra.

Chindaprasirt, P., Sujumnongtokul, P., & Posi, P. (2019). Durability and Mechanical Properties of Pavement Concrete Containing Bagasse Ash. ScienceDirect, 1612-1626.

Chusilp, N., Jaturapitakkul, C., & Kiattikomol, K. (2009). Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Construction and Building Materials, 23, 3523-3531. doi:10.1016/j.conbuildmat.2009.06.046

Deepika, S., Anand, G., Bahurudeen, A., & Santhanam, M. M. (2017). Construction Products with Sugarcane Bagasse Ash Binder. Materials in Civil Engineering, 1-10. doi:10.1061/(ASCE)MT.1943-5533.0001999.

Duc, H., Yeong, N., & My Ngoc, T. (2018). Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. (Elsevier, Ed.) Construction and Building Materials, 138-147. Obtenido de https://doi.org/10.1016/j.conbuildmat.2018.07.029

Farnaz , B., Arjumend , M., & Mehmood , A. (2019). Characterization of Sugarcane Bagasse Ash as Pozzolan and Infuence on Concrete Properties. Science and Engineering, 1-10. Obtenido de https://doi.org/10.1007/s13369-019-04301-y

G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, & E.M.R. Fairbairn. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement & Concrete Composites, 30, 410-418. doi:10.1016/j.cemconcomp.2008.01.001

Hernández-Olivares, F., Medina-Alvarado, R. E., Burneo-Valdivieso, X. E., & Zúñiga-Suárez, A. R. (2020). Short sugarcane bagasse fibers cementitious composites for building construction. Construction and Building Materials, 247(118451), 1-17.

Huertas, L., Martinez, P., & Espitia, M. (2019). Analysis of compression resistance property of concrete modified with sugarcane (Saccharum Officinarum) bagasse fibers). Instituto Español de Estudios Estratégicos (IEEE), 1-4.

Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608-617. doi:https://doi.org/10.1016/j.conbuildmat.2018.05.037

K. Ganesan, K. Rajagopal , & K. Thangavel. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement & Concrete Composites, 29, 515-524. doi: 10.1016/j.cemconcomp.2007.03.001

K.Rekha, & R.Thenmozhi. (2014). Evaluation of Mechanical properties of BAGcrete. Advanced Materials Research , 984-985, 693-697.

Lakshmi Priya, K., & Ragupathy, R. (2016). Effect of sugarcane bagasse ash on strength properties of concrete. International Journal of Research in Engineering and Technology, 159-164.

Lathamaheswari, Kalaiyarasan, V., & Mohankumar, G. (2017). Study on Bagasse Ash As Partial Replacement of Cement in Concreto. International Journal of Engineering Research and Development, 1-6.

Loh, Y., Sujan, D., Rahman, M., & Das, C. (2013). Sugarcane bagasse -The future composite material A Literature Review. Resources Conservation and Recycling, 75, 14-22.

Lorca Aranda, P. (2014). Efecto de la adición de Hidróxido Cálcico sobre mezclas con alta sustitución de cemento por ceniza volante. Tesis Doctoral. Universidad Politécnica de Valencia, España.

Manjunath , R., & Rahul, M. (2019). Properties of Sugarcane Bagasse Ash Blended Self-Compacting Concrete Mixes. Sustainable Construction, 265-274. doi:https://doi.org/10.1007/978-981-13-3317-0_24

Montakarntiwong, K., Chusilp, N., Tangchirapat, W., & Jaturapitakkul, C. (2013). Strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry. Materia ls and Design, 413-420.

Muhamad , A., Mohammed , A., Zulkifli , A., Nazrin , D., Nooraina , M., Siti Khadijah , C., . . . Mohamad , Y. (2013). Usage of Sugarcane Bagasse as Concrete Retarder. International Journal of Business and Technopreneurship, 3, 495-503.

Murugesan, Vidjeapriya, & Bahurudee. (2020). Sugarcane Bagasse Ash-Blended Concrete for Effective Resource Utilization Between Sugar and Construction Industries. Society for Sugar Research & Promotion , 1-12. Obtenido de https://doi.org/10.1007/s12355-020-00794-2

Nasir, S., Asma, A. H., Muhd, F. N., & Hashem , A. (2016). Effects of sugarcane bagasse ash on the properties of concreto. Institution of Civil Engineers, 1-10. Obtenido de http://dx.doi.org/10.1680/jensu.15.00014

Osorio Saraz, J., Varón Aristizabal, F., & Herrera Mejía, J. (2007). Comportamiento mecánico del concreto reforzado con fibra de bagazo de caña de azúcar. DYNA, 69-79.

Otoko, G. (2014). Use of bagasse ash as partial replacement of cement in concrete. International Journal of Innovative Research & Development,, 3, 285-289.

Rajasekar, A., Arunachalam, K., Kottaisamy, M., & Saraswathy, V. (2018). Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Construction and Building Materials, 350-356. Obtenido de https://doi.org/10.1016/j.conbuildmat.2018.03.140

Ribeiro, B., Yamamoto, T., & Yamashiki, Y. (2020). A Study on the Reduction in Hydration Heat and Thermal Strain of Concrete with Addition of Sugarcane Bagasse Fiber. Journal materials, 13, 1-14.

Ruano, G., Bellomo, F., López, G., Bertuzzi, A., Nallim, L., & Oller, S. (2020). Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Construction and Building Materials, 1-9.

Sajjad , A. M., Jamaluddin , Wan, I., Abd , H. A., Abdul , A., Samiullah , S., & Nizakat , A. (2017). Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Publishing Ltd, 1-9. Obtenido de https://doi.org/10.1088/1757-899X/271/1/012001

Sales, A., & Lima, S. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Management, 30, 1114-1122. doi:10.1016/j.wasman.2010.01.026

Somna , R., Jaturapitakkul , C., Rattanachu, P., & Chalee , W. (2012). Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Materials and Design, 36, 597-603. doi:10.1016/j.matdes.2011.11.065

Sounthararajan, V., Sivasankar, S., Vinodh Kumar, R., Modak, N., & Dilli Bai, K. (2019). Valorization of Specially Designed Concrete by Using Sugarcane Bagasse Ash and Inducing the Special Benefits of Waste Tin Fiber Reinforced Concrete. International Journal of Innovative Technology and Exploring Engineering, 220-224. doi:10.35940/ijitee.L3589.1081219

Sundaravadivel , D., & Mohana , R. (2018). Recent studies of sugarcane bagasse ash in Concrete and mortar: a review. Revista Internacional de Ingeniería, Investigación y Tecnología , 7, 306-312.

Tri Hatmoko, J., & Suryadharma, H. (2019). Behavior of bagasse ash-calcium carbide residue stabilized soil with polyester fiber inclusion. Materials Science and Engineering, 1-12. doi:10.1088/1757-899X/620/1/012066

V.M. Sounthararajan, Y Stalin Jose, & ,S. Sivasankar . (2019). Synergetic Effect of Sugarcane Bagasse Ash with Low Modulus of Fiber Reinforced Concrete. International Journal of Recent Technology and Engineering (IJRTE), 7171-7175.

Wegdan W. , E.-N. (2020). Applicability of Using Natural Fibers for Reinforcing Concrete. Materials Science and Engineering, 809, 1-7. doi:10.1088/1757-899X/809/1/012018

Xiong, W. (2018). Bagasse composites:A review of material preparation, attributes,and affecting factors. Thermoplastic Composite Materials, 31(8), 1112-1146.

Y.R.Loh, D.Sujan, M.E.Rahman, & C.A.Das. (2013). Sugarcane bagasse-The future composite material :A literature review. Resources, conservation and recycling, 14-22.

Published

2021-07-31

How to Cite

Muñoz-Pérez, S. P., Coronel-Camino, R. S., & Vargas Villafuerte, J. C. (2021). Impact of sugarcane derivatives on the physical-mechanical properties of concrete. Ingenium Et Potentia, 3(5), 4–37. https://doi.org/10.35381/i.p.v3i5.1367