Engineering prompts in industry 4.0: optimization and intelligent automation of industrial processes
DOI:
https://doi.org/10.35381/i.p.v7i12.4438Keywords:
Prompts engineering, artificial intelligence, industry 4.0, optimization., (UNESCO Thesaurus).Abstract
This study reviews the impact of prompts engineering and artificial intelligence in Industry 4.0, focusing on their application in decision making optimization, industrial process optimization, and supply chain and inventory improvement. The review shows that effective prompts design improves the responsiveness of AI models for decision making and operational efficiency, allowing companies to reduce their costs. In addition, AI applied to supply chain and inventory management helps predict demand and reduce logistics costs. However, challenges remain, such as variability in the quality of AI model responses in correspondence with designed prompts, and risks of response bias, which requires further training and the establishment of ethical standards.
Downloads
References
Aghaziarati, A., y Rahimi, H. (2025). The Future of Digital Assistants: Human Dependence and Behavioral Change. Journal of Foresight and Public Health, 2(1), 52-61. https://n9.cl/us2kg
Badini, S., Regondi, S., Frontoni, E., y Pugliese, R. (2023). Assessing the capabilities of ChatGPT to improve additive manufacturing troubleshooting. Advanced Industrial and Engineering Polymer Research, 6(3), 278-287. https://doi.org/10.1016/j.aiepr.2023.03.003
Burgos Zambrano, V. R., Zambrano Mieles, J. D., y Mieles Cevallos, D. (2025). El rol de la inteligencia artificial en la automatización y la gestión de la cadena de suministro. GADE: Revista Científica, 5(1), 390-414. https://n9.cl/g0773
Cadena Centeno, M. A., y Benavides Ramírez, L. G. (2024). Smart energy soportado por Inteligencia Artificial: un futuro sostenible y eficiente. Encuentro Internacional De Educación En Ingeniería. https://doi.org/10.26507/paper.3926
Caisa Herrera, C. A., Paredes Anchatipán, A. D., y Romero Bedón, F. R. (2024). Análisis del uso de la inteligencia artificial en la toma de decisiones en sistemas de control eléctrico industrial.: Analysis of the use of artificial intelligence in decision making in industrial electrical control systems. Revista Científica Multidisciplinar G-Nerando, 5(2), 163-181. https://doi.org/10.60100/rcmg.v5i2.261
Ceseña Romero, P. I., García Rivera, B. R., y Olguín Tiznado, J. E. (2024). Industria 4.0: Adaptabilidad y Barreras de la Industria Automotriz: Análisis Biblio Hermográfico. Investigación administrativa, 53(134), 00005. https://n9.cl/u8rga
Chen Cheng, C., Chung, E., y Correa, N. (2023). La inteligencia Artificial y su Impacto en la Industria de la Ingeniería. REICIT, 3(1), 26-40. https://doi.org/10.48204/reict.v3n1.3948
García, J. S. C., Pincay Delgado, M. A., Mendoza Pionce, B. S., y Bravo Quijije, G. S. (2024). Uso estratégico de la inteligencia artificial en la gestión de la cadena de suministro empresarial. Ciencia y Desarrollo, 27(2), 267-276. https://n9.cl/cfo98
González Rivera, L. V., y Molina Arredondo, R. D. (2024). Sistema de Gestión de Calidad basado en herramientas de la Industria 4.0 para su aplicación en la industria de manufactura en el sector fronterizo: 7CP24-22. Memorias Científicas Y Tecnológicas, 3(2), 39. https://n9.cl/xa13r9
Guzmán Solano, C. A., Aguilar Cruz, C., y Arroyo-Fernández, I. (2024). Effective Pitch Decks through User-Centered Prompts for Generative AI. Avances En Interacción Humano-Computadora, 9(1), 240-244. https://doi.org/10.47756/aihc.y9i1.176
Herman, E. (2025). Optimizing Prompt Engineering for Generative AI. Mercury Learning and Information. https://doi.org/10.1515/9781501521355
Javaid, M., Haleem, A., Singh, R. P., y Sinha, A. K. (2024). Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), 100083. https://doi.org/10.1016/j.grets.2024.100083
Sebastian, J., Riascos Guerrero, J. A., Galván Colonia, E., y Pincay Lozada, J. L. (2024). Estrategias basadas en inteligencia artificial para la gestión de inventarios en la cadena de suministro. Revista Tecnología En Marcha, 37(6), 88-97. https://doi.org/10.18845/tm.v37i6.7271
Jin, L., Zhai, X., Wang, K., Zhang, K., Wu, D., Nazir, A., Jiang, J., y Liao, W.-H. (2024). Big data, machine learning, and digital twin assisted additive manufacturing: A review. Materials & Design, 244, 113086. https://doi.org/10.1016/j.matdes.2024.113086
Lemeš, S. (2024). Prompt Engineering. In: Karabegovic, I. (Ed). Artificial Intelligence in Industry 4.0: The future that comes true. (pp. 159-170). https://doi.org/10.5644/PI2024.215.08
Mali, S., Kulkarni, S., Patil, T., Patil, S., Desai, S., y Patil, R. (2024). Transformación de las operaciones industriales mediante la integración de soluciones emergentes en la Industria 4.0. En Conferencia Internacional de la Sección de Pune del IEEE 2024 (PuneCon). https://ieeexplore.ieee.org/document/10894812
Rath, K. C., Khang, A., Mishra, S. K., Patnaik, P., Mohanty, G., y Dash, T. K. (2024). Integration of Artificial Intelligence and Internet of Things Technology Solutions in Smart Manufacturing. In Machine Vision and Industrial Robotics in Manufacturing. (pp. 155-177). CRC Press. https://doi.org/10.1201/9781003438137-9
Salgado García, B. (2024). Aplicaciones de la inteligencia artificial Generativa (IAG) en el contexto de la seguridad. [Tesis de licenciatura, Universitat Oberta de Catalunya]. Repositori Institucional (O2). https://n9.cl/0egst
Shakur, S., Lubaba, M., Debnath, B., Bari, M., y Rahman, A. (2024). Exploring the Challenges of Industry 4.0 Adoption in the FMCG Sector: Implications for Resilient Supply Chain in Emerging Economy. Logística, 8(1), 27. https://doi.org/10.3390/logistics8010027
Siino, M., y Tinnirello, I. (2024). GPT Prompt Engineering for Scheduling Appliances Usage for Energy Cost Optimization. In 2024 IEEE International Symposium on Measurements & Networking (M&N) 1-6. https://n9.cl/mr2vce
Tao, F., Zhang, H., y Zhang, C. (2024). Advancements and challenges of digital twins in industry. Nature Computational Science, 4, 169-177. https://doi.org/10.1038/s43588-024-00603-w
Vu, N. G. H., Wang, K., y Wang, G. G. (2025). Effective prompting with ChatGPT for problem formulation in engineering optimization. Engineering Optimization, 1-18. https://doi.org/10.1080/0305215X.2025.2450686
Zaidi, S. M. R., Alam, A., & Khan, M. Y. (2024). Enhancing Efficiency in Advanced Manufacturing through IoT Integration. In Engineering Headway. 2nd International Conference on Recent Advancements in Materials, Design & Manufacturing. Trans Tech Publications Ltd. https://doi.org/10.4028/p-4hbpgf
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Manuel José Peñalver-Higuera, Lino Rolando Rodríguez-Alegre, Rosario Del Pilar López-Padilla , Josía Jeseff Isea-Argüelles

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://fundacionkoinonia.com.ve/ojs/index.php/ingeniumetpotentia/oai