Nosocomial pneumonia due to acinetobacter baumanni: a case study

Authors

DOI:

https://doi.org/10.35381/s.v.v8i1.3834

Keywords:

Healthcare-associated pneumonia, pleuropneumonia, respiratory tract infections, (Source: DeCS)

Abstract

Objective: to analyze risk factors, resistance mechanisms against multiple drugs to face Acinetobacter baumanniieste infection. Method: Descriptive documentary. Conclusion: Multiple risk factors associated with A. baumanni infection were identified, such as prolonged exposure to broad-spectrum antibiotics or systemic antibiotics, previous colonization by A. baumanni, chronic pulmonary diseases, long duration of mechanical ventilation and prolonged stay in health care homes, especially in the Intensive Care Unit. Also, the implementation of infection control measures and specific protocols for the management and treatment of infections caused by this antigen was interpreted. The strategies should range from early identification, adequate isolation of the patient to strict compliance with medical-hospital guidelines, which reduces the spread of this pathogen and thus the risk of producing high-impact nosocomial infections.

Downloads

Download data is not yet available.

References

Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep. 2021;48(10):6987-6998. https://doi.org/10.1007/s11033-021-06690-6

Nie D, Hu Y, Chen Z, et al. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci. 2020;27(1):26. https://doi.org/10.1186/s12929-020-0617-7

Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules. 2020;10(5):720. https://doi.org/10.3390/biom10050720

Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel). 2020;9(3):119. https://doi.org/10.3390/antibiotics9030119

Gedefie A, Demsis W, Ashagrie M, et al. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect Drug Resist. 2021;14:3711-3719. https://doi.org/10.2147/IDR.S332051

Mea HJ, Yong PVC, Wong EH. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol Res. 2021;247:126722. https://doi.org/10.1016/j.micres.2021.126722

Tu Q, Pu M, Li Y, et al. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses. 2023;15(3):673. https://doi.org/10.3390/v15030673

Saipriya K, Swathi CH, Ratnakar KS, Sritharan V. Quorum-sensing system in Acinetobacter baumannii: a potential target for new drug development. J Appl Microbiol. 2020;128(1):15-27. https://doi.org/10.1111/jam.14330

Jean SS, Chang YC, Lin WC, Lee WS, Hsueh PR, Hsu CW. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J Clin Med. 2020;9(1):275. https://doi.org/10.3390/jcm9010275

Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021;21(2):213-225. https://doi.org/10.1016/S1473-3099(20)30731-3

El-Ghali A, Kunz Coyne AJ, Caniff K, Bleick C, Rybak MJ. Sulbactam-durlobactam: A novel β-lactam-β-lactamase inhibitor combination targeting carbapenem-resistant Acinetobacter baumannii infections. Pharmacotherapy. 2023;43(6):502-513. https://doi.org/10.1002/phar.2802

Kaye KS, Shorr AF, Wunderink RG, et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect Dis. 2023;23(9):1072-1084. https://doi.org/10.1016/S1473-3099(23)00184-6

Jaruratanasirikul S, Nitchot W, Wongpoowarak W, Samaeng M, Nawakitrangsan M. Population pharmacokinetics and Monte Carlo simulations of sulbactam to optimize dosage regimens in patients with ventilator-associated pneumonia caused by Acinetobacter baumannii. Eur J Pharm Sci. 2019;136:104940. https://doi.org/10.1016/j.ejps.2019.05.018

Piperaki ET, Tzouvelekis LS, Miriagou V, Daikos GL. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect. 2019;25(8):951-957. https://doi.org/10.1016/j.cmi.2019.03.014

Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J Clin Pharm Ther. 2022;47(11):1875-1884. https://doi.org/10.1111/jcpt.13787

Published

2024-02-01

How to Cite

Montenegro-Montenegro, D. A., Sulca-Espín, K. G., Carvajal-Gavilanes, J. S., & Viteri-Rodríguez, J. A. (2024). Nosocomial pneumonia due to acinetobacter baumanni: a case study. Revista Arbitrada Interdisciplinaria De Ciencias De La Salud. Salud Y Vida, 8(1), 814–821. https://doi.org/10.35381/s.v.v8i1.3834

Issue

Section

Original breve

Most read articles by the same author(s)

1 2 3 4 > >>