Evaluación de desplazamiento medio adaptativo tridimensional y modelo de corona en segmentación arbórea con LiDAR

Autores/as

DOI:

https://doi.org/10.35381/i.p.v7i13.4781

Palabras clave:

Aprendizaje automático, inventario forestal, evaluación de tecnologías, (Tesauro UNESCO).

Resumen

Este trabajo tuvo como objetivo evaluar el desplazamiento medio adaptativo tridimensional con un modelo de corona para la segmentación de árboles individuales a partir de datos LiDAR obtenidos con vehículos aéreos no tripulados. Se empleó un conjunto de datos abierto y se aplicó una exploración de parámetros basada en coeficientes alométricos bajo un modelo elipsoidal. Los árboles detectados se emparejaron con puntos de inventario mediante criterios de distancia y se midieron métricas de exactitud, exhaustividad, equilibrio y error en la localización.         El análisis por parcelas reveló diferencias según el tipo de bosque: las masas caducifolias resultaron más complejas, las coníferas alcanzaron detecciones casi completas con falsos positivos y las masas mixtas lograron el mejor equilibrio. Se concluyó que el método fue eficaz y reproducible, aunque dependiente de la parametrización.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Álvarez Mendoza, C. I., Mollocana, J. G., y Gualotuna, D. (2024). Mapping of NDVI in Ecuador during the last 20 years using the Google Earth Engine cloud geospatial tool. En M. V. Garcia, C. Gordón-Gallegos, A. Salazar-Ramírez & C. Nuñez (Eds.), Proceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI 2023). Springer Nature. https://doi.org/10.1007/978-3-031-70981-4_1

Aubry Kientz, M., Dutrieux, R., Ferraz, A., Saatchi, S., Hamraz, H., Williams, J., Coomes, D., Piboule, A., y Vincent, G. (2019). A comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests. Remote Sensing, 11(9), 1086. https://doi.org/10.3390/rs11091086

Chen, W., Hu, X., Chen, W., Hong, Y., y Yang, M. (2018). Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques. Remote Sensing, 10(7), 1078. https://doi.org/10.3390/rs10071078

Comesaña Cebral, L., Martínez Sánchez, J., Lorenzo, H., & Arias, P. (2021). Individual tree segmentation method based on mobile backpack LiDAR point clouds. Sensors, 21(18), 6007. https://doi.org/10.3390/s21186007

Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Bradford, M. A. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–205. https://doi.org/10.1038/nature14967

Deng, S., Jing, S., & Zhao, H. (2024). A hybrid method for individual tree detection in broadleaf forests based on UAV-LiDAR data and multistage 3D structure analysis. Forests, 15(6), 1043. https://doi.org/10.3390/f15061043

Dubrovin, I., Fortin, C., & Kedrov, A. (2024). An open dataset for individual tree detection in UAV LiDAR point clouds and RGB orthophotos in dense mixed forests. Scientific Reports, 14(1), 72669. https://doi.org/10.1038/s41598-024-72669-5

Ferraz, A., Saatchi, S., Mallet, C., & Meyer, V. (2016). Lidar detection of individual tree size in tropical forests. Remote Sensing of Environment, 183, 318–333. https://doi.org/10.1016/j.rse.2016.05.028

Henrich, J., van Delden, J., Seidel, D., Kneib, T., & Ecker, A. S. (2024). TreeLearn: A deep learning method for segmenting individual trees from ground-based LiDAR forest point clouds. Ecological Informatics, 84, 102888. https://doi.org/10.1016/j.ecoinf.2024.102888

Hua, Z., Xu, S., & Liu, Y. (2022). Individual tree segmentation from side-view LiDAR point clouds of street trees using Shadow-Cut. Remote Sensing, 14(22), 5742. https://doi.org/10.3390/rs14225742

Hu, X., Chen, W., & Xu, W. (2017). Adaptive mean shift-based identification of individual trees using airborne LiDAR data. Remote Sensing, 9(2), 148. https://doi.org/10.3390/rs9020148

Hui, Z., Li, N., Xia, Y., Cheng, P., & He, Y. (2021). Individual tree extraction from UAV LiDAR point clouds based on self-adaptive mean shift segmentation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V(1), 25–30. https://doi.org/10.5194/isprs-annals-V-1-2021-25-2021

Jakubowski, M. K., Li, W., Guo, Q., & Kelly, M. (2013). Delineating individual trees from lidar data: A comparison of vector- and raster-based segmentation approaches. Remote Sensing, 5(9), 4163–4186. https://doi.org/10.3390/rs5094163

Kandare, K., Ørka, H. O., Chan, J. C. W., & Dalponte, M. (2016). Effects of forest structure and airborne laser scanning point cloud density on 3D delineation of individual tree crowns. European Journal of Remote Sensing, 49(1), 337–359. https://doi.org/10.5721/EuJRS20164919

Lei, L., Yin, T., Chai, G., Li, Y., Wang, Y., Jia, X., & Zhang, X. (2022). A novel algorithm of individual tree crowns segmentation considering three-dimensional canopy attributes using UAV oblique photos. International Journal of Applied Earth Observation and Geoinformation, 112, 102893. https://doi.org/10.1016/j.jag.2022.102893

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: Deep learning on point sets for 3D classification and segmentation. En Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 77–85). IEEE. https://doi.org/10.1109/CVPR.2017.16

Tusa, E., Monnet, J. M., Barre, J. B., Dalla Mura, M., Dalponte, M., & Chanussot, J. (2021). Individual tree segmentation based on mean shift and crown shape model for temperate forest. IEEE Geoscience and Remote Sensing Letters, 18(12), 2052–2056. https://doi.org/10.1109/LGRS.2020.3012718

Xiao, W., Zaforemska, A., Smigaj, M., Wang, Y., & Gaulton, R. (2019). Mean shift segmentation assessment for individual forest tree delineation from airborne LiDAR data. Remote Sensing, 11(11), 1263. https://doi.org/10.3390/rs11111263

Xiao, W., Xu, S., Oude Elberink, S., & Vosselman, G. (2016). Individual tree crown modeling and change detection from airborne LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8), 3467–3477. https://doi.org/10.1109/JSTARS.2016.2541780

Yang, Z., Su, Y., Li, W., Cheng, K., Guan, H., Ren, Y., Hu, T., Xu, G., & Guo, Q. (2024). Segmenting individual trees from terrestrial LiDAR data using tree branch directivity. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 956–969. https://doi.org/10.1109/JSTARS.2023.3334014

Yan, W., Guan, H., Cao, L., Yu, Y., Li, C., & Lu, J. Y. (2020). A self-adaptive mean shift tree-segmentation method using UAV LiDAR data. Remote Sensing, 12(3), 515. https://doi.org/10.3390/rs12030515

You, H., Liu, Y., Lei, P., Qin, Z., & You, Q. (2023). Segmentation of individual mangrove trees using UAV-based LiDAR data. Ecological Informatics, 77, 102200. https://doi.org/10.1016/j.ecoinf.2023.102200

Yu, J., Lei, L., & Li, Z. (2024). Individual tree segmentation based on seed points detected by an adaptive crown shaped algorithm using UAV-LiDAR data. Remote Sensing, 16(5), 825. https://doi.org/10.3390/rs16050825

Zhu, L. (2024). GeoSep-PointNet++: A 3D point cloud semantic segmentation algorithm based on geometric information enhancement and feature separation encoding. En Proceedings of the 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA) (pp. 1514–1519). IEEE. https://doi.org/10.1109/ICIBA62489.2024.10869004

Descargas

Publicado

01-08-2025

Cómo citar

Tusa-Jumbo, E. A., & Calle-Jimenez, T. (2025). Evaluación de desplazamiento medio adaptativo tridimensional y modelo de corona en segmentación arbórea con LiDAR. Ingenium Et Potentia, 7(13), 81–98. https://doi.org/10.35381/i.p.v7i13.4781

Número

Sección

De Investigación