The Internet of Things for monitoring agricultural environmental factors: a systematic mapping study

Authors

DOI:

https://doi.org/10.35381/i.p.v8i14.4909

Keywords:

Smart agriculture, Internet of Things (IoT), Agricultural environmental monitoring, Wireless sensors, (UNESCO Thesaurus).

Abstract

The application of the Internet of Things (IoT) in agriculture faces various approaches and challenges due to the diversity of technologies and environmental factors monitored. The general research question addressed was: How have IoT technologies been applied to monitor environmental factors in agricultural production over the past five years? To answer this, indexed databases (Scopus, IEEE Xplore, ScienceDirect, and SAGE Journals) were reviewed, applying inclusion and exclusion criteria based on the PICOC framework. Thirty studies were analyzed, revealing that the most frequently monitored factors are temperature, humidity, pH, CO₂, and solar radiation. The predominant technologies include low-power sensors, WSN and LoRaWAN networks, and platforms such as Raspberry Pi and ThingSpeak. However, limitations persist, including connectivity dependence, lack of interoperability, and implementation costs. The findings provide a structured overview of the state of the art and guide future research toward sustainable and efficient IoT solutions.

Downloads

Download data is not yet available.

References

Aarthi, R., Sivakumar, D., y Mariappan, V. (2023). Smart Soil Property Analysis Using IoT: A Case Study Implementation in Backyard Gardening. Procedia Computer Science, 218, 2842–2851. https://doi.org/10.1016/J.PROCS.2023.01.255

Abu, N. S., Bukhari, W. M., Ong, C. H., Kassim, A. M., Izzuddin, T. A., Sukhaimie, M. N., Norasikin, M. A., y Rasid, A. F. A. (2022). Internet of Things applications in precision agriculture: A review. Journal of Robotics and Control (JRC), 3(3), Article 14159-338. https://doi.org/10.18196/jrc.v3i3.14159

Adami, D., Ojo, M. O., y Giordano, S. (2021). Design, Development and Evaluation of an Intelligent Animal Repelling System for Crop Protection Based on Embedded Edge-AI. IEEE Access, 9, 132125–132139. https://doi.org/10.1109/ACCESS.2021.3114503

Alahmad, T., Neményi, M., y Nyéki, A. (2023). Applying IoT Sensors and Big Data to Improve Precision Crop Production: A Review. Agronomy, 13(10), 2603. https://doi.org/10.3390/agronomy13102603

Al Mamun, M. R., Ahmed, A. K., Upoma, S. M., Haque, M. M., y Ashik-E-Rabbani, M. (2025). IoT-enabled solar-powered smart irrigation for precision agriculture. Smart Agricultural Technology, 10, 100773. https://doi.org/10.1016/j.atech.2025.100773

Alumfareh, M. F., Humayun, M., Ahmad, Z., y Khan, A. (2024). An Intelligent LoRaWAN-based IoT Device for Monitoring and Control Solutions in Smart Farming through anomaly detection integrated with unsupervised machine learning. IEEE Access, 12, 119072-119086. https://doi.org/10.1109/ACCESS.2024.3450587

Bauer, J., y Aschenbruck, N. (2020). Towards a low-cost RSSI-based crop monitoring. ACM Transactions on Internet of Things, 1(4), 21. https://doi.org/10.1145/3393667

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report. Ver. 2.3. EBSE Technical Report. https://n9.cl/a2tfx

Cisternas, I., et al. (2020). Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176, 105626. https://doi.org/10.1016/j.compag.2020.105626

Eteng, I., Ugbe, C., y Oladimeji, S. (2022). Implementing smart farming using internet technology and data analytics: a prototype of a rice farm. Eastern-European Journal of Enterprise Technologies, 3(2), 48–62. https://doi.org/10.15587/1729-4061.2022.259113

Frandsen, T. F., Bruun Nielsen, M. F., Lindhardt, C. L., y Eriksen, M. B. (2020). Using the full PICO model as a search tool for systematic reviews resulted in lower recall for some PICO elements. Journal of Clinical Epidemiology, 127, 69–75. https://doi.org/10.1016/j.jclinepi.2020.07.005

Ferrarezi, R. S., y Peng, T. W. (2021). Smart System for Automated Irrigation Using Internet of Things Devices. HortTechnology, 31(6), 642–649. https://doi.org/10.21273/HORTTECH04860-21

Food and Agriculture Organization of the United Nations [FAO]. (2017). The future of food and agriculture: Trends and challenges. FAO. https://n9.cl/jrmgr

Garrido, M. C., Cadenas, J. M., Bueno-Crespo, A., Martínez-España, R., Giménez, J. G., y Cecilia, J. M. (2022). Evaporation Forecasting through Interpretable Data Analysis Techniques. Electronics (Switzerland), 11(4), 536. https://doi.org/10.3390/electronics11040536

Hachimi, C. El, Belaqziz, S., Khabba, S., Sebbar, B., Dhiba, D., y Chehbouni, A. (2023). Smart Weather Data Management Based on Artificial Intelligence and Big Data Analytics for Precision Agriculture. Agriculture (Switzerland), 13(1), 95. https://doi.org/10.3390/agriculture13010095

Huda, S., Nogami, Y., Rahayu, M., Akada, T., Hossain, M. B., Musthafa, M. B., Jie, Y., y Anh, L. H. (2024). IoT-Enabled Plant Monitoring System with Power Optimization and Secure Authentication. Computers, Materials and Continua, 81(2), 3165–3187. https://doi.org/10.32604/CMC.2024.058144

Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., y Mridha, M. F. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880. https://doi.org/10.1016/J.JAFR.2023.100880

Jamal, J., Azizi, S., Abdollahpouri, A., Ghaderi, N., Sarabi, B., Silva-Ordaz, A., y Castaño-Meneses, V. M. (2021). Monitoring rocket (Eruca sativa) growth parameters using the Internet of Things under supplemental LEDs lighting. Sensing and Bio-Sensing Research, 34, 100450. https://doi.org/10.1016/j.sbsr.2021.100450

Jin, X. B., Yu, X. H., Wang, X. Y., Bai, Y. T., Su, T. L., y Kong, J. L. (2020). Deep learning predictor for sustainable precision agriculture based on internet of things system. Sustainability (Switzerland), 12(4), 1433. https://doi.org/10.3390/su12041433

Kalimuthu, V. K., y PrabuPelavendran, M. J. (2024). Blockchain Based Secure Data Sharing in Precision Agriculture: a Comprehensive Methodology Incorporating Deep learning and Hybrid Encryption Model. Brazilian Archives of Biology and Technology, 67, 1–17. https://doi.org/10.1590/1678-4324-2024230858

Marcu, I., Drăgulinescu, A. M., Oprea, C., Suciu, G., y Bălăceanu, C. (2022). Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform. Sustainability (Switzerland), 14(18), 11487. https://doi.org/10.3390/su141811487

Morchid, A., Oughannou, Z., Alami, R. El, Qjidaa, H., Jamil, M. O., y Khalid, H. M. (2024). Integrated internet of things (IoT) solutions for early fire detection in smart agriculture. Results in Engineering, 24, 103392. https://doi.org/10.1016/J.RINENG.2024.103392

Pragadeswaran, S., Vishnu, S., Surya, P., Kurup, V., y Tamilselvan, S. (2023). An investigation on real-time monitoring system for livestock and agriculture using IoT. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 3(1), 102-109. https://doi.org/10.48175/ijarsct-8566

Peppi, L. M., Zauli, M., Manfrini, L., Grappadelli, L. C., De Marchi, L., y Traverso, P. A. (2023). Low-cost, high-resolution and no-manning distributed sensing system for the continuous monitoring of fruit growth in precision farming. Acta IMEKO, 12(2), 17. https://doi.org/10.21014/actaimeko.v12i2.1342

Placidi, P., Morbidelli, R., Fortunati, D., Papini, N., Gobbi, F., y Scorzoni, A. (2021). Monitoring soil and ambient parameters in the iot precision agriculture scenario: An original modeling approach dedicated to low-cost soil water content sensors. Sensors, 21(15), 5110. https://doi.org/10.3390/s21155110

Qayyum, K., Zaman, I., y Förster, A. (2020). H2O Sense: a WSN-based monitoring system for fish tanks. SN Applied Sciences, 2(10), 1643. https://doi.org/10.1007/s42452-020-03328-3

Rokade, A. I., Kadu, A. D., y Belsare, K. S. (2022). An Autonomous Smart Farming System for Computational Data Analytics using IoT. Journal of Physics: Conference Series, 2327(1), 012019. https://doi.org/10.1088/1742-6596/2327/1/012019

Satheswaran, N., Sri Pavithra, P., Selva Prabha, V., y Sugirtha, S. (2023). IoT based smart agriculture monitoring system project. International Journal for Research in Applied Science y Engineering Technology (IJRASET), 11(6), Article 2190.

Segrera Salom, G. A., Castro Ayala, D. F., y Galvis Sanmiguel, J. A. (2022). Sistema IoT flexible para el monitoreo de variables ambientales en aplicaciones agroindustriales. Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/handle/10554/63717

Sami, M., Khan, S. Q., Khurram, M., Farooq, M. U., Anjum, R., Aziz, S., Qureshi, R., y Sadak, F. (2022). A Deep Learning-Based Sensor Modeling for Smart Irrigation System. Agronomy, 12(1), 212. https://doi.org/10.3390/agronomy12010212

Suresh, P., Aswathy, R. H., Arumugam, S., Albraikan, A. A., Al-Wesabi, F. N., Hilal, A. M., y Alamgeer, M. (2022). Iot with evolutionary algorithm based deep learning for smart irrigation system. Computers, Materials and Continua, 71(1), 1713–1728. https://doi.org/10.32604/cmc.2022.021789

Tsipis, A., Papamichail, A., Koufoudakis, G., Tsoumanis, G., Polykalas, S. E., y Oikonomou, K. (2020). Latency-Adjustable Cloud/Fog Computing Architecture for Time-Sensitive Environmental Monitoring in Olive Groves. AgriEngineering, 2(1), 175–205. https://doi.org/10.3390/agriengineering2010011

Tugnolo, A., Oliveira, H. M., Giovenzana, V., Fontes, N., Silva, S., Fernandes, C., Graça, A., Pampuri, A., Casson, A., Piteira, J., Freitas, P., Guidetti, R., y Beghi, R. (2025). Quantitative prediction of grape ripening parameters combining an autonomous IoT spectral sensing system and chemometrics. Computers and Electronics in Agriculture, 230, 109856. https://doi.org/10.1016/j.compag.2024.109856

Vandôme, P., Leauthaud, C., Moinard, S., Sainlez, O., Mekki, I., Zairi, A., y Belaud, G. (2023). Making technological innovations accessible to agricultural water management: Design of a low-cost wireless sensor network for drip irrigation monitoring in Tunisia. Smart Agricultural Technology, 4, 100227. https://doi.org/10.1016/J.ATECH.2023.100227

Zito, F., Giannoccaro, N. I., Serio, R., y Strazzella, S. (2024). Analysis and Development of an IoT System for an Agrivoltaics Plant. Technologies, 12(7), 106. https://doi.org/10.3390/technologies12070106

Published

2026-01-01

How to Cite

Olivera-Ruiz, G., & Vega-Ventocilla, E. J. (2026). The Internet of Things for monitoring agricultural environmental factors: a systematic mapping study. Ingenium Et Potentia, 8(14), 137–161. https://doi.org/10.35381/i.p.v8i14.4909

Issue

Section

De Investigación