Comparative analysis of CNN models in the detection of tuberculosis using chest X-rays

Authors

DOI:

https://doi.org/10.35381/i.p.v8i14.4904

Keywords:

CNN, diagnosis, tuberculosis, X-ray., (UNESCO Thesaurus).

Abstract

Tuberculosis is a critical health problem that affects the lungs. Despite technological advances, its early diagnosis continues to depend on traditional methods with a high degree of subjectivity. This study focuses on comparing different CNN models that support the diagnosis of tuberculosis more accurately and objectively, as a complementary diagnostic method for this disease. The CRISP-DM methodology was used for the training process of the following models: TBNet, DenseNet121, ResNet50, and MobileNetV2. These four convolutional neural network architectures were evaluated taking into account their metrics: accuracy, loss, recall, F1-Score, sensitivity, specificity, and AUC-ROC. The study provides a graphical demonstration of the results of each model, with DenseNet121 obtaining the most stable results among its different metrics, ensuring a favourable contrast between the results classified as false positives and false negatives.

Downloads

Download data is not yet available.

References

Brun, A. L., Chabi, M. L., Picard, C., Mellot, F., y Grenier, P. A. (2021). Lung Transplantation: CT Assessment of Chronic Lung Allograft Dysfunction (CLAD). Diagnostics, 11(5), 817. https://doi.org/10.3390/diagnostics11050817

Chicho, B. T., y Sallow, A. B. (2021). A Comprehensive Survey of Deep Learning Models Based on Keras Framework. Journal of Soft Computing and Data Mining, 2(2), 49-62. https://doi.org/10.30880/JSCDM.2021.02.02.005

Hadi, M. A., y Ali, H. I. (2021). Control of COVID-19 system using a novel nonlinear robust control algorithm. Biomedical Signal Processing and Control, 64, 102317. https://doi.org/10.1016/j.bspc.2020.102317

Kiran, S., y Jabeen, I. (2024). Tuberculosis Chest X-rays Images. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/10304386

Kotei, E., y Thirunavukarasu, R. (2024). Tuberculosis Detection From Chest X-Ray Image Modalities Based on Transformer and Convolutional Neural Network. IEEE Access, 12, 97417–97427. https://doi.org/10.1109/ACCESS.2024.3428446

Liu, Y. E., Mabene, Y., Camelo, S., Rueda, Z. V., Pelissari, D. M., Dockhorn Costa Johansen, F., Huaman, M. A., Avalos-Cruz, T., Alarcón, V. A., Ladutke, L. M., Bergman, M., Cohen, T., Goldhaber-Fiebert, J. D., Croda, J., y Andrews, J. R. (2024). Mass incarceration as a driver of the tuberculosis epidemic in Latin America and projected effects of policy alternatives: a mathematical modelling study. The Lancet Public Health, 9(11), e841–e851. https://doi.org/10.1016/S2468-2667(24)00192-0

Lu, S. Y., Wang, S. H., Zhang, X., y Zhang, Y. D. (2022). TBNet: a context-aware graph network for tuberculosis diagnosis. Computer Methods and Programs in Biomedicine, 214, 106587. https://doi.org/10.1016/J.CMPB.2021.106587

Madyono, M., y Nabilah, A. (2025). Detection of Tuberculosis Disease in Lung X-ray Images Using the DenseNet121 Method. International Journal of Engineering, Science and Information Technology, 5(2), 379–385. https://doi.org/10.52088/ijesty.v5i2.853

Rahman, T., Khandakar, A., Kadir, M. A., Islam, K. R., Islam, K. F., Mazhar, R., Hamid, T., Islam, M. T., Kashem, S., Mahbub, Z. Bin, Ayari, M. A., y Chowdhury, M. E. H. (2020a). Reliable Tuberculosis Detection Using Chest X-Ray With Deep Learning, Segmentation and Visualization. IEEE Access, 8, 191586–191601. https://doi.org/10.1109/ACCESS.2020.3031384

Romero García, C. V., Saraguro Reyes, C. M., Mazon Olivo, B. E., y Morocho Román, R. F. (2025). Agricultura de precisión en la producción de banano. Revisión sistemática. Ingenium et Potentia, 7(12), 50–76. https://doi.org/10.35381/I.P.V7I12.4450

Sánchez Figueroa, L. S., Guillén Muñóz, V. A., Pérez Pérez, J. D., Rodríguez Abrego, P. A., Caprile Mata, C. M., y Cartagena López, K. L. (2024). Actualización en la detección de la tuberculosis a través de pruebas moleculares. Alerta, Revista científica del Instituto Nacional de Salud, 7(2), 184–190. https://doi.org/10.5377/alerta.v7i2.17129

Schröer, C., Kruse, F., y Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/J.PROCS.2021.01.199

Sim, Y., Shin, W., y Lee, S. (2025). Automated code transformation for distributed training of TensorFlow deep learning models. Science of Computer Programming, 242, 103260. https://doi.org/10.1016/J.SCICO.2024.103260

Tamayo, J. J., y Sauñe, A. B. (2024). Soluciones de TI basadas en machine learning aplicables a problemas del sistema de salud peruano. Revista Científica: BIOTECH AND ENGINEERING, 4(1), 156–163. https://doi.org/10.52248/EB.VOL4ISS1.116

Wong, A., Lee, J. R. H., Rahmat-Khah, H., Sabri, A., Alaref, A., y Liu, H. (2022). TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images. Frontiers in Artificial Intelligence, 5, 827299. https://doi.org/10.3389/FRAI.2022.827299

Published

2026-01-01

How to Cite

Aranda-Neira, D. S., Bravo-Flores, C. I., Mazon-Olivo, B. E., & Rivas-Asanza, W. B. (2026). Comparative analysis of CNN models in the detection of tuberculosis using chest X-rays. Ingenium Et Potentia, 8(14), 88–110. https://doi.org/10.35381/i.p.v8i14.4904

Issue

Section

De Investigación

Most read articles by the same author(s)