Synthesis of graphene from graphite using an electron accelerator
DOI:
https://doi.org/10.35381/i.p.v7i13.4589Keywords:
Graphene, electron accelerator, organic solvents, UV spectroscopy, scanning electron microscopy, (UNESCO Thesaurus).Abstract
The objective was to develop a method of synthesizing graphene in liquid phase using an electron accelerator, which facilitated the disruption of the Van der Waals forces of graphite. Various parameters were evaluated, including solvent type, liquefaction times, stirring speed, and radiation dose. The samples were centrifuged at 1000 rpm for 10 minutes. UV spectroscopy detected characteristic graphene absorption peaks between 264 and 267 nm, corresponding to the π-π* transition. Infrared spectroscopy revealed the presence of functional groups such as hydroxyls, carbonyls and amines, being more diversed in samples treated with DMF and ethanol. Morphological characterization via scanning electron microscopy evidenced transparent films with smooth surfaces and irregular edges, confirming successful graphene synthesis. The results established an efficient and reproducible procedure, suitable for industrial-scale due to its low cost, simplicity and high effectiveness in producing micrometric graphene.
Downloads
References
Ashok Kumar, S. S., Bashir, S., Ramesh, K., & Ramesh, S. (2022). A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. Journal of Materials Science, 57, 12236–12278. https://doi.org/10.1007/s10853-022-07346-x
Brik, D. (6 de julio de 2022). Grafeno sintetizado en Ecuador, un proyecto pionero de alentadores resultados. SWI swissinfo.ch. https://n9.cl/ns0p0n
Chai , L., Cui, X. j., Qi , Y. q., Teng, N., Hou, X. l., & Deng , T. s. (2021). A new strategy for the efficient exfoliation of graphite into graphene. New Carbon Materials, 36(6), 1179-1186. https://doi.org/10.1016/S1872-5805(21)60100-2
Fang, X., Pang, K., Zhao, G., Wang , Y., Zhang , W., Zhang , Y., Zhou, S., Zhang, J., & Gong, C. (2024). Improving the liquid phase exfoliation efficiency of graphene based on the enhanced intermolecular and interfacial interactions. Chemical Engineering Journal, 480. https://doi.org/10.1016/j.cej.2023.148263
Covarrubias-Gordillo, C., Rivera-Salinas, J., Fonseca-Florido, H., Ávila-Orta, C., Medellín-Rodríguez, F., Medellín-Banda, D., & Pérez-Rodríguez, P. (2023). Enhancement of polypropylene mechanical behavior by the synergistic effect of mixtures of carbon nanofibers and graphene nanoplatelets modified with cold propylene plasma. Applied Polymer, 140(24). https://doi.org/10.1002/app.53957
Laraba, S. R., Lou, W., Rezzoug, A., Zahrac , Q. u., Zhang, S., Wud , B., . . . Li, Y. (2022). Graphene-based composites for biomedical applications. Green Chemistry Letters and Reviews, 15(3), 724-748. https://doi.org/10.1080/17518253.2022.2128698
Liu, N., Tang, Q. G., Huang, B., & Wang, Y. (2022). Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production. Crystals, 12(1). https://doi.org/10.3390/cryst12010025
Marín Tapia, L. A. (2020). Síntesis de grafeno a partir de grafito mediante un acelerador de electrones con dosis de 50 y 100 kGy. [Tesis de pregrado,Escuela Superior Politécnica de Chimborazo] DSpace ESPOCH. https://n9.cl/k2fbw
Moosa, A., & Abed, M. (2021). Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry, 45(3), 493-519. https://doi.org/10.3906/kim-2101-19
Ramezani, M. J., & Rahmani, O. (2024). A review of recent progress in the graphene syntheses and its applications. Mechanics of Advanced Materials and Structures, 1–33. https://doi.org/10.1080/15376494.2024.2420911
Sumdani, M., Islam, S., Yahaya , A., & Safie , S. (2021). Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 23(253). https://doi.org/10.1007/s11051-021-05371-6
Urcuyo, R., González-Flores, D., & Cordero-Solano, K. (2021). Perspectivas y aplicaciones. Revista Colombiana de Química, 50(1), 51-85. https://doi.org/10.15446/rev.colomb.quim.v50n1.90134
Vacacela Gomez , C., Guevara, M., Tene , T., Villamagua, L., Tubon Usca, G., Maldonado, F., Tapia, C., Cataldo, A., Belluci, S., & Caputi, L. S. (2021). The liquid exfoliation of graphene in polar solvents. Applied Surface Science, 546. https://doi.org/10.1016/j.apsusc.2021.149046
Villareal Valdiviezo, G. P., Múzquiz Ramos, E. M., Gallardo Heredia, M., & Ríos Hurtado, J. C. (2024). Electroquímica en Medicina: Grafeno y Electroestimulación Celular. Revista mexicana de ingeniería biomédica, 45(2), 140-150. https://doi.org/10.17488/rmib.45.2.8
Vohle, O., von Sturm, F., Wege, E., & Frohs, W. (2021). Graphite. Em Industrial Carbon and Graphite Materials, Volume I: Raw Materials, Production and Applications (pp. 89-103). Hubert Jäger, Wilhelm Frohs. https://doi.org/10.1002/9783527674046.ch5
Wen, Y., Liu , H., & Jiang, X. (2023). Preparation of graphene by exfoliation and its application in lithium-ion batteries. Journal of Alloys and Compounds, 961. https://doi.org/10.1016/j.jallcom.2023.170885
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Luis Alberto Marin-Tapia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://fundacionkoinonia.com.ve/ojs/index.php/ingeniumetpotentia/oai