Thermal comfort in public spaces
DOI:
https://doi.org/10.35381/i.p.v7i12.4401Keywords:
Thermal comfort, environmental variables, urban planning strategies, (UNESCO Thesaurus).Abstract
This study evaluates the thermal comfort in the San Lorenzo Central Park in the San Lorenzo de Jipijapa, province of Manabí, and highlights the importance of integrating aesthetic criteria with technical criteria in the design of outdoor areas. Through the correlation between environmental variables such as temperature, wind speed and direction, solar radiation and relative humidity; with the results of a thermal perception survey applied to park users, it was possible to identify that the combination of high temperatures, solar radiation and high humidity generate thermal discomfort. It was also noted that breezes and shade are important, so it is recommended to improve tree planting with suitable trees, to create wind corridors to improve thermal comfort and promote the well-being of the community.
Downloads
References
Adnan Bukhari, H. (2023). A Systematic Review on Outcomes of Patients with Heatstroke and Heat Exhaustion. Open Access Emergency Medicine, 15, 343-354. https://doi.org/10.2147/OAEM.S419028
Aghamolaei, R., y Lak, A. (2023). Outdoor Thermal Comfort for Active Ageing in Urban Open Spaces: Reviewing the Concepts and Parameters. Ageing Int, 48, 438-451. https://doi.org/10.1007/s12126-022-09482-w
American Society of Heating, Refrigerating and Air Conditioning Engineers. (2023). Standard 55-2023, Thermal Environmental Conditions for Human Occupancy. https://n9.cl/2gfd8j
Fanger, P. O., (1972). Thermal comfort. Analysis and applications in environmental engineering. CABI Digital Library. https://n9.cl/nlgggt
Hou, G., Zhai, X., Kuai, Y., Shu, P., Zhang, P., & Shen, W. (2024). A systematic review on studies of thermal comfort in building transitional space. Journal of Building Engineering, 109280. https://doi.org/10.1016/j.jobe.2024.109280
Hu, R., Liu, J., Xie, Y., Jiao, J., Fang, Z., & Lin, B. (2023). Effects of mask wearing duration and relative humidity on thermal perception in the summer outdoor built environment. Build. Simul., 16, 1601–1616. https://doi.org/10.1007/s12273-022-0978-9
Instituto Nacional de Estadísticas y Censo. (2022). Ecuador Data Analytics. Censo Ecuador. https://censoecuador.ecudatanalytics.com/
Jiang, J., Wang, D., Liu, Y., Di, Y., & Liu, J. (2021). A holistic approach to the evaluation of the indoor temperature based on thermal comfort and learning performance. Building and Environment, 196, 107803. https://doi.org/10.1016/j.buildenv.2021.107803
Li, X., Sun, Y., & Yang, Z. (2023). UAVs-based smart agriculture IoT systems: An application-oriented design. 6th International Symposium on Autonomous Systems (ISAS), 1-5. https://doi.org/10.1109/ISAS59543.2023.10164405
Liu, Z., Li, J., & Xi, T. (2023). A Review of Thermal Comfort Evaluation and Improvement in Urban Outdoor Spaces. Buildings, 13(12), 3050. https://doi.org/10.3390/buildings13123050
Marino, C., Nucara, A., Panzera, M. F., & Pietrafesa, M. (2024). Evaluating direct and diffuse solar radiation components through global radiation measurements from three fixed directions. Energy Conversion and Management, 315, 118741. https://doi.org/10.1016/j.enconman.2024.118741
Ma, T., & Zhang, J. (2024). Integrating thermal perception and public space use – an experimental outdoor comfort study in cold winter-hot summer zone: Beijing, China. Urban Climate, 58, 102138. https://doi.org/10.1016/j.uclim.2024.102138
Muñoz Salcedo, M., y Peci López, F. (2023). Site-adaptation of global horizontal irradiance applying machine-learning techniques in coastal regions of Ecuador. 2023 IEEE Colombian Caribbean Conference (C3), 1-5. https://doi.org/10.1109/C358072.2023.10436314
Organización Internacional de Normalización (ISO). (2005). ISO 7730:2005 Ergonomía de los ambientes térmicos — Determinación analítica e interpretación del confort térmico mediante el cálculo de los índices PMV y PPD y los criterios de confort térmico local. https://n9.cl/tepib
Rossi, F., Cardinali, M., Di Giuseppe, A., Castellani, B., & Nicolini, A. (2022). Outdoor thermal comfort improvement with advanced solar awnings: Subjective and objective survey. Building and Environment, 215, 108967. https://doi.org/10.1016/j.buildenv.2022.108967
Sayad, B., Alkama, D., Ahmad, H., Baili, J., Aljahdaly, N. H., & Menni, Y. (2021). Nature-based solutions to improve the summer thermal comfort outdoors. Case Studies in Thermal Engineering, 28, 101399. https://doi.org/10.1016/j.csite.2021.101399
Seastedt, H., Schuetz, J., Perkins, A., Gamble, M., & Sinkkonen, A. (2024). Impact of urban biodiversity and climate change on children’s health and well being. Pediatr Res. https://doi.org/10.1038/s41390-024-03769-1
Talukder, B., Ganguli, N., Matthew, R., vanLoon, G. W., Hipel, K. W., & Orbinski, J. (2022). Climate change-accelerated ocean biodiversity loss & associated planetary health impacts. The Journal of Climate Change and Health, 6, 100114. https://doi.org/10.1016/j.joclim.2022.100114
World Meteorological Organization. (2024). State of the climate 2024 update: COP29. World Meteorological Organization. https://n9.cl/87k5tg
Wu, J., Liu, H., Yang, J., & Chen, Y. (2021). Tree barrier prediction of power lines based on tree height growth model. IOP Conference Series: Earth and Environmental Science, 645(1), 012008. https://doi.org/10.1088/1755-1315/645/1/012008
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Walter David Cobeña-Loor, Juan Carlos Mera-Cedeño, Silvia Patricia Palacios-Giler

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://fundacionkoinonia.com.ve/ojs/index.php/ingeniumetpotentia/oai