Thermal comfort in public spaces

Authors

DOI:

https://doi.org/10.35381/i.p.v7i12.4401

Keywords:

Thermal comfort, environmental variables, urban planning strategies, (UNESCO Thesaurus).

Abstract

This study evaluates the thermal comfort in the San Lorenzo Central Park in the San Lorenzo de Jipijapa, province of Manabí, and highlights the importance of integrating aesthetic criteria with technical criteria in the design of outdoor areas. Through the correlation between environmental variables such as temperature, wind speed and direction, solar radiation and relative humidity; with the results of a thermal perception survey applied to park users, it was possible to identify that the combination of high temperatures, solar radiation and high humidity generate thermal discomfort. It was also noted that breezes and shade are important, so it is recommended to improve tree planting with suitable trees, to create wind corridors to improve thermal comfort and promote the well-being of the community.

Downloads

Download data is not yet available.

References

Adnan Bukhari, H. (2023). A Systematic Review on Outcomes of Patients with Heatstroke and Heat Exhaustion. Open Access Emergency Medicine, 15, 343-354. https://doi.org/10.2147/OAEM.S419028

Aghamolaei, R., y Lak, A. (2023). Outdoor Thermal Comfort for Active Ageing in Urban Open Spaces: Reviewing the Concepts and Parameters. Ageing Int, 48, 438-451. https://doi.org/10.1007/s12126-022-09482-w

American Society of Heating, Refrigerating and Air Conditioning Engineers. (2023). Standard 55-2023, Thermal Environmental Conditions for Human Occupancy. https://n9.cl/2gfd8j

Fanger, P. O., (1972). Thermal comfort. Analysis and applications in environmental engineering. CABI Digital Library. https://n9.cl/nlgggt

Hou, G., Zhai, X., Kuai, Y., Shu, P., Zhang, P., & Shen, W. (2024). A systematic review on studies of thermal comfort in building transitional space. Journal of Building Engineering, 109280. https://doi.org/10.1016/j.jobe.2024.109280

Hu, R., Liu, J., Xie, Y., Jiao, J., Fang, Z., & Lin, B. (2023). Effects of mask wearing duration and relative humidity on thermal perception in the summer outdoor built environment. Build. Simul., 16, 1601–1616. https://doi.org/10.1007/s12273-022-0978-9

Instituto Nacional de Estadísticas y Censo. (2022). Ecuador Data Analytics. Censo Ecuador. https://censoecuador.ecudatanalytics.com/

Jiang, J., Wang, D., Liu, Y., Di, Y., & Liu, J. (2021). A holistic approach to the evaluation of the indoor temperature based on thermal comfort and learning performance. Building and Environment, 196, 107803. https://doi.org/10.1016/j.buildenv.2021.107803

Li, X., Sun, Y., & Yang, Z. (2023). UAVs-based smart agriculture IoT systems: An application-oriented design. 6th International Symposium on Autonomous Systems (ISAS), 1-5. https://doi.org/10.1109/ISAS59543.2023.10164405

Liu, Z., Li, J., & Xi, T. (2023). A Review of Thermal Comfort Evaluation and Improvement in Urban Outdoor Spaces. Buildings, 13(12), 3050. https://doi.org/10.3390/buildings13123050

Marino, C., Nucara, A., Panzera, M. F., & Pietrafesa, M. (2024). Evaluating direct and diffuse solar radiation components through global radiation measurements from three fixed directions. Energy Conversion and Management, 315, 118741. https://doi.org/10.1016/j.enconman.2024.118741

Ma, T., & Zhang, J. (2024). Integrating thermal perception and public space use – an experimental outdoor comfort study in cold winter-hot summer zone: Beijing, China. Urban Climate, 58, 102138. https://doi.org/10.1016/j.uclim.2024.102138

Muñoz Salcedo, M., y Peci López, F. (2023). Site-adaptation of global horizontal irradiance applying machine-learning techniques in coastal regions of Ecuador. 2023 IEEE Colombian Caribbean Conference (C3), 1-5. https://doi.org/10.1109/C358072.2023.10436314

Organización Internacional de Normalización (ISO). (2005). ISO 7730:2005 Ergonomía de los ambientes térmicos — Determinación analítica e interpretación del confort térmico mediante el cálculo de los índices PMV y PPD y los criterios de confort térmico local. https://n9.cl/tepib

Rossi, F., Cardinali, M., Di Giuseppe, A., Castellani, B., & Nicolini, A. (2022). Outdoor thermal comfort improvement with advanced solar awnings: Subjective and objective survey. Building and Environment, 215, 108967. https://doi.org/10.1016/j.buildenv.2022.108967

Sayad, B., Alkama, D., Ahmad, H., Baili, J., Aljahdaly, N. H., & Menni, Y. (2021). Nature-based solutions to improve the summer thermal comfort outdoors. Case Studies in Thermal Engineering, 28, 101399. https://doi.org/10.1016/j.csite.2021.101399

Seastedt, H., Schuetz, J., Perkins, A., Gamble, M., & Sinkkonen, A. (2024). Impact of urban biodiversity and climate change on children’s health and well being. Pediatr Res. https://doi.org/10.1038/s41390-024-03769-1

Talukder, B., Ganguli, N., Matthew, R., vanLoon, G. W., Hipel, K. W., & Orbinski, J. (2022). Climate change-accelerated ocean biodiversity loss & associated planetary health impacts. The Journal of Climate Change and Health, 6, 100114. https://doi.org/10.1016/j.joclim.2022.100114

World Meteorological Organization. (2024). State of the climate 2024 update: COP29. World Meteorological Organization. https://n9.cl/87k5tg

Wu, J., Liu, H., Yang, J., & Chen, Y. (2021). Tree barrier prediction of power lines based on tree height growth model. IOP Conference Series: Earth and Environmental Science, 645(1), 012008. https://doi.org/10.1088/1755-1315/645/1/012008

Published

2025-01-01

How to Cite

Cobeña-Loor, W. D., Mera-Cedeño, J. C., & Palacios-Giler, S. P. (2025). Thermal comfort in public spaces. Ingenium Et Potentia, 7(12), 4–18. https://doi.org/10.35381/i.p.v7i12.4401

Issue

Section

De Investigación