Operant conditioning applied in hamsters by reinforcement with maze support
DOI:
https://doi.org/10.35381/s.v.v8i2.4126Keywords:
Operant conditioning, cognitive learning, psychological adaptation, (Source: DeCS)Abstract
Objective: To record the behavior of two hamsters when solving a maze using operant conditioning as a method, in order to understand how they learn and adapt to the maze through this type of conditioning and to compare their learning strategies and patterns. Method: Experimental study with trial-and-error scheme, 2 hamsters were used. Conclusion: This study confirms the usefulness of operant conditioning as an effective method to investigate learning and adaptation in hamsters. The results highlight the ability of these rodents to learn and adjust their behavior autonomously, while underscoring the influence of both individual and contextual factors on their learning strategies. These findings not only contribute to knowledge about cognition in hamsters, but also have implications for the design of future studies on behavior and learning in rodents and other animal species.
Downloads
References
Miler K, Scharf I. Operant conditioning in antlion larvae and its impairment following exposure to elevated temperatures. Anim Cogn. 2022;25(3):509-518. http://dx.doi.org/10.1007/s10071-021-01570-9
Guttlein L, Molina JC, Abate P. Operant conditioning with a stimulus discrimination: An alternative method for evaluating alcohol reinforcement in preweaning rats. J Neurosci Methods. 2021;363:109345. http://dx.doi.org/10.1016/j.jneumeth.2021.109345
Eftekhar A, Norton JJS, McDonough CM, Wolpaw JR. Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics. 2018;15(3):669-683. http://dx.doi.org/10.1007/s13311-018-0643-2
Adelina N, Chiu CHM, Lam K, Takano K, Barry TJ. Social operant conditioning of autobiographical memory sharing. Behav Res Ther. 2023;168:104385. http://dx.doi.org/10.1016/j.brat.2023.104385
Eder AB, Krishna A, Van Dessel P. Operant evaluative conditioning. J Exp Psychol Anim Learn Cogn. 2019;45(1):102-110. http://dx.doi.org/10.1037/xan0000189
Bąbel P. Operant conditioning as a new mechanism of placebo effects. Eur J Pain. 2020;24(5):902-908. http://dx.doi.org/10.1002/ejp.1544
Chikamoto N, Fujimoto K, Nakai J, Namiki K, Hatakeyama D, Ito E. Genes Upregulated by Operant Conditioning of Escape Behavior in the Pond Snail Lymnaea stagnalis. Zoolog Sci. 2023;40(5):375-381. http://dx.doi.org/10.2108/zs230032
Lintas A, Sánchez-Campusano R, Villa AEP, Gruart A, Delgado-García JM. Operant conditioning deficits and modified local field potential activities in parvalbumin-deficient mice. Sci Rep. 2021;11(1):2970. http://dx.doi.org/10.1038/s41598-021-82519-3
Ito H, Fujiki S, Mori Y, Kansaku K. Self-reorganization of neuronal activation patterns in the cortex under brain-machine interface and neural operant conditioning. Neurosci Res. 2020;156:279-292. http://dx.doi.org/10.1016/j.neures.2020.03.008
Borland JM, Frantz KJ, Aiani LM, Grantham KN, Song Z, Albers HE. A novel operant task to assess social reward and motivation in rodents. J Neurosci Methods. 2017;287:80-88. http://dx.doi.org/10.1016/j.jneumeth.2017.06.003
Song Z, Borland JM, Larkin TE, O'Malley M, Albers HE. Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology. 2016;74:164-172. http://dx.doi.org/10.1016/j.psyneuen.2016.09.001
Borland JM, Aiani LM, Norvelle A, et al. Sex-dependent regulation of social reward by oxytocin receptors in the ventral tegmental area. Neuropsychopharmacology. 2019;44(4):785-792. http://dx.doi.org/10.1038/s41386-018-0262-y
Clinard CT, Bader LR, Sullivan MA, Cooper MA. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology. 2015;90:102-112. http://dx.doi.org/10.1016/j.neuropharm.2014.11.016
González-Martínez LF, D'Aigle J, Lee SM, Lee HJ, Delville Y. Social stress in early puberty has long-term impacts on impulsive action. Behav Neurosci. 2017;131(3):249-261. http://dx.doi.org/10.1037/bne0000196
Borland JM, Grantham KN, Aiani LM, Frantz KJ, Albers HE. Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology. 2018;95:128-137. http://dx.doi.org/10.1016/j.psyneuen.2018.05.028
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vicente Daniel Robalino-Masabanda, Nancy Noelia Arias-Campaña, Dayana Mishell Jácome-Chiluisa, Andrea Gabriela Suárez-López

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH: https://fundacionkoinonia.com.ve/ojs/index.php/saludyvida/oai.



