Ventricular hypertrophy predictor using electrocardiograms developed in commercial MATLAB software

Authors

DOI:

https://doi.org/10.35381/s.v.v5i1.1591

Keywords:

Telecardiology, Cardiology Service, Hospital, statistics & numerical data. (Source, DeCS).

Abstract

Objective: to evaluate the usefulness of MATLAB software as a predictor of ventricular cardiovascular pathologies, based on a mathematical algorithm with utility in public health. Method: Quasi-experimental. Results: The recognition is focused on the QT interval of the ECG horizontal axis, taking into account that this interval must be in a range of 0.35-0.45 s in order not to be pathological. Conclusion: MATLAB software is a basic tool for the development of this type of algorithms, since it minimizes the computational work and takes advantage of the accuracy of ECG graphs for a better medical diagnosis. The use of algorithms and use of equations already structured in consulted articles allowed analyzing the variation that occurs in the QT interval in a given time, being demonstrated that it can be used to diagnose pathologies related to bradycardia and other similar pathologies.

Downloads

Download data is not yet available.

References

Rogalski M, Zdańkowski P, Trusiak M. FPM app: an open-source MATLAB application for simple and intuitive Fourier ptychographic reconstruction. Bioinformatics. 2021;btab237. doi:10.1093/bioinformatics/btab237

Eshghi S, Nooraeefar V, Darvizeh A, Gorb SN, Rajabi H. WingMesh: A Matlab-Based Application for Finite Element Modeling of Insect Wings. Insects. 2020;11(8):546. doi:10.3390/insects11080546

Jalalvand AR, Roushani M, Goicoechea HC, Rutledge DN, Gu HW. MATLAB in electrochemistry: A review. Talanta. 2019;194:205-225. doi:10.1016/j.talanta.2018.10.041

Moukarzel G, Lemay MA, Spence AJ. A MATLAB application for automated H-Reflex measurements and analyses. Biomed Signal Process Control. 2021;66:102448. doi:10.1016/j.bspc.2021.102448

Haji Maghsoudi O, Vahedipour A, Gerstenhaber J, et al. Matlab software for impedance spectroscopy designed for neuroscience applications. J Neurosci Methods. 2018;307:70-83. doi:10.1016/j.jneumeth.2018.06.020

Li C, An X, Niu L, Zhang H, Wang Z, Fu M. Cardiac insufficiency in infants. Minerva Pediatr. 2017;69(3):219-224. doi:10.23736/S0026-4946.16.04365-6

Han X, Zhang S, Chen Z, et al. Cardiac biomarkers of heart failure in chronic kidney disease. Clin Chim Acta. 2020;510:298-310. doi:10.1016/j.cca.2020.07.040

Gaggin HK, Januzzi JL Jr. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta. 2013;1832(12):2442-2450. doi:10.1016/j.bbadis.2012.12.014

Sharma S, Drezner JA, Baggish A, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol. 2017;69(8):1057-1075. doi:10.1016/j.jacc.2017.01.015

Dasgupta S, Iannucci G, Mao C, Clabby M, Oster ME. Myocarditis in the pediatric population: A review. Congenit Heart Dis. 2019;14(5):868-877. doi:10.1111/chd.12835

Yokokawa M, Jung DY, Hero AO III, Baser K, Morady F, Bogun F. Single- and dual-site pace mapping of idiopathic septal intramural ventricular arrhythmias. Heart Rhythm. 2016;13(1):72-77. doi:10.1016/j.hrthm.2015.08.032

Skejø SD, Lund ME, Stensvig M, Kaae NM, Rasmussen J. Running in circles: Describing running kinematics using Fourier series. J Biomech. 2021;115:110187. doi:10.1016/j.jbiomech.2020.110187

Gurbeta L, Badnjevic A, Maksimovic M, Omanovic-Miklicanin E, Sejdic E. A telehealth system for automated diagnosis of asthma and chronical obstructive pulmonary disease. J Am Med Inform Assoc. 2018;25(9):1213-1217. doi:10.1093/jamia/ocy055

Aguiar C, Batista S, Pacheco R. Cardiovascular effects of fingolimod: Relevance, detection and approach. Rev Port Cardiol. 2015;34(4):279-285. doi:10.1016/j.repc.2014.11.012

Cabrera-Rego JO, Rojas-Quiroz AF, Vidal-Turruelles Y, Yanes-Quintana AA. Cardiovascular disorders in hospitalized patients with dengue infection. Manifestaciones cardiovasculares en pacientes hospitalizados con dengue. Enferm Infecc Microbiol Clin (Engl Ed). 2021;39(3):115-118. doi:10.1016/j.eimc.2020.02.032

Published

2022-02-17

How to Cite

Viteri-Rodríguez, J. A., & Siza-Gualpa, R. F. (2022). Ventricular hypertrophy predictor using electrocardiograms developed in commercial MATLAB software. Revista Arbitrada Interdisciplinaria De Ciencias De La Salud. Salud Y Vida, 5(1), 81–94. https://doi.org/10.35381/s.v.v5i1.1591

Issue

Section

Original breve

Most read articles by the same author(s)

1 2 3 > >>