Swine production management systems. Case: Canton Carlos Julio Arosemena Tola, Ecuador

Authors

DOI:

https://doi.org/10.35381/r.k.v7i14.1851

Keywords:

Food technology, food processing, food preservation. (UNESCO Thesaurus).

Abstract

The stock of pigs in Ecuador shows that from 2014 to 2021 there was a decrease of 856_396 head, although the loss of the last five years represents only 7.1%. In Napo this last stage had critical repercussions because its swine inventory fell by 56.7%. With this background, the objective of the research was to analyze the swine production management systems in the canton of Carlos Julio Arosemena Tola, Napo province, Ecuador. A structured survey with open-ended questions was applied. The results were analyzed in three stages: 1) Partial correlation controlled by the area dedicated to swine production, 2) Principal Component Analysis and 3) k-means cluster analysis. In the management systems 64.5% of the accumulated variance is explained by feed efficiency; reproductive activity; immunization; helminthic control and professionalization.

Downloads

Download data is not yet available.

References

Álvarez, S., Timler, C. J., Michalscheck, M., Paas, W., Descheemaeker, K., Tittonell, P., Andersson, J. A. y Groot, J. (2018). Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development. PLoS ONE, 13(5), e0194757. doi: 10.1371/journal.pone.0194757

Beltran-Alcrudo, D., Falco, J. R., Raizman, E. & Dietze, K. (2019). Transboundary spread of pig diseases: the role of international trade and travel. BMC Veterinary Research, 15(1). doi: 10.1186/s12917-019-1800-5

Chipfupa, U. y Wale, E. (2018). Farmer typology formulation accounting for psychological capital: implications for on-farm entrepreneurial development. Development in Practice, 28(5), 600-614. doi: 10.1080/09614524.2018.1467377

Chiliquinga-Quinchiguano, R. (2017). Enfermedades Infecciosas y Parasitarias Presentes en Porcinos en la Provincia de Chimborazo [Infectious and Parasitic Diseases Present in Swine in the Province of Chimborazo]. http://repositorio.utc.edu.ec/handle/27000/5613

Estupiñan, K., Barba, J., Martínez, A., & Delgado, J. (2020). Caracterización genética del porcino Criollo de Ecuador [Genetic characterization of Ecuadorian Criollo swine]. Archivos de Zootecnia, 69(268). https://doi.org/10.21071/az.v69i268.5385

Hair, J., Black, W., Babin, B. y Anderson, R. (2019). Multivariate Data Analysis (A. Ainscow Ed. 8th ed., 834 p.). Hampshire, United Kingdom: Cengage Learning.

INEC. (2019). Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC)-Base de Datos Históricas 2014-2019 [Continuous Agricultural Production and Area Survey (ESPAC)-Historical Database 2014-2019]. (2019 ed.). Quito, Ecuador: Instituto Nacional de Estadísticas y Censos. Recuperado de https://n9.cl/3n1xj

INEC. (2020). Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC) 2020 [Continuous Agricultural Production and Area Survey (ESPAC) 2020]. (2020 ed.). Quito, Ecuador: Instituto Nacional de Estadísticas y Censos. Recuperado de https://n9.cl/3n1xj

INEC. (2021). Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC) 2021 [Continuous Survey of Agricultural Surface and Production (ESPAC) 2021]. (2021 ed.). Quito, Ecuador: Instituto Nacional de Estadísticas y Censos. Recuperado de https://n9.cl/3n1xj

Kuo, H.-J. (2018). Identifying Sustainability—The Measurement and Typology of Sustainable Agriculture in the United States. Euramerica, 48(2), 195-222.

Lopez-Ridaura, S., Sanders, A., Barba-Escoto, L., Wiegel, J., Mayorga-Cortes, M., Gonzalez-Esquivel, C., Lopez-Ramirez, M. A., Escoto-Masis, R. M., Morales-Galindo, E. y García-Barcena, T. S. (2021). Immediate impact of COVID-19 pandemic on farming systems in Central America and Mexico. Agricultural Systems, 192, 103178. doi: 10.1016/j.agsy.2021.103178

McAuliffe, G. A., Takahashi, T., Mogensen, L., Hermansen, J. E., Sage, C. L., Chapman, D. V. y Lee, M. R. F. (2017). Environmental trade-offs of pig production systems under varied operational efficiencies. Journal of Cleaner Production, 165, 1163-1173. doi: 10.1016/j.jclepro.2017.07.191

Mwongera, C., Shikuku, K. M., Twyman, J., Läderach, P., Ampaire, E., Van Asten, P., Twomlowd, S. y Winowiecki, L. A. (2017). Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agricultural Systems, 151, 192–203. doi: 10.1016/j.agsy.2016.05.009

Osorio-García, A. M., Paz, L., Howland, F., Ortega, L. A., Acosta-Alba, I., Arenas, L., Chirinda, N., Martinez-Baron, D., Findji, O. B., Loboguerrero, A. M., Chia, E. y Andrieu, N. (2019). Can an innovation platform support a local process of climate-smart agriculture implementation? A case study in Cauca, Colombia. Agroecology and Sustainable Food Systems.

Taherdoost, H., Sahibuddin, S. & Jalaliyoon, N. (2013). Exploratory Factor Analysis; Concepts and Theory. Advances in Applied and Pure Mathematics, 375-282.

Montesdeoca-Guzmán, L. (2017). Análisis de los sistemas de producción porcina tradicionales en las zonas rurales de la parroquia Colonche del cantón Santa Elena, Ecuador [Analysis of traditional swine production systems in rural areas of Colonche parish, Santa Elena canton, Ecuador]. https://repositorio.uteq.edu.ec/handle/43000/2733

Published

2022-07-14

How to Cite

Cayambe-Padilla, M. A., Viamonte-Garcés, M. I., & Orlando-Caicedo, W. (2022). Swine production management systems. Case: Canton Carlos Julio Arosemena Tola, Ecuador. Revista Arbitrada Interdisciplinaria Koinonía, 7(14), 4–20. https://doi.org/10.35381/r.k.v7i14.1851

Issue

Section

De Investigación