Revista Arbitrada Interdisciplinaria KOINONIA

Año IV. Vol IV. N°8. Julio – Diciembre 2019 Hecho el depósito de Ley: FA2016000010 ISSN: 2542-3088

FUNDACIÓN KOINONIA (F.K). Santa Ana de Coro. Venezuela.

Rudyard Antonio Arteaga Solórzano; Freddy Alain Mendoza Rivadeneira; Plinio Abelardo Vargas Zambrano; Roy Leonardo Barre Zambrano

http://dx.doi.org/10.35381/r.k.v4i8.485

Monitoreo del proceso fermentativo de cuatro licores de frutas (Passiflora edulis, Citrus cinensis, Citrus nobilis y Citrus máxima)

Monitoring of the fermentative process of four fruit liqueurs (Passiflora edulis, Citrus cinensis, Citrus nobilis and Citrus maximus)

Rudyard Antonio Arteaga Solórzano
r_artega@utm.edu.ec
Universidad Técnica de Manabí, Portoviejo
Ecuador
https://orcid.org/0000-0001-5499-7334

Freddy Alain Mendoza Rivadeneira

famendoza@utm.edu.ec

Universidad Técnica de Manabí, Portoviejo

Ecuador

https://orcid.org/0000-0003-1457-688X

Plinio Abelardo Vargas Zambrano
<u>pavargas@utm.edu.ec</u>
Universidad Técnica de Manabí, Portoviejo
Ecuador
https://orcid.org/0000-0002-2152-7317

Roy Leonardo Barre Zambrano rolebaz@hotmail.com
Universidad Laica Eloy Alfaro de Manabí, Ecuador. https://orcid.org/0000-0002-4849-3532.

Recibido: 23 de mayo de 2019 Aprobado: 12 de junio de 2019

RESUMEN

Esta investigación fue realizada en los laboratorios de la Universidad Técnica de Manabí (UTM) extensión Chone, con el objetivo de monitorear el proceso de fermentación alcohólica de cuatro licores de frutas (maracuyá Passiflora edulis; Naranja Citrus cinensis; mandarina -Citrus nobilis; y Citrus máxima) elaborados artesanalmente.

Los parámetros evaluados están regidos en normativas europeas para los vinos y contemplan parámetros como el pH, Azúcar, grado alcohólico; desarrollo de las levaduras y temperatura. Los resultados relacionados a los parámetros como pH, densidad y Temperatura no reflejaron diferencia en los análisis siendo su comportamiento muy similar; sin embargo, en el comportamiento de las levaduras en el mosto de toronja presento un desarrollo precoz en el primer día y en los otros tres mostos alcanza el máximo desarrollo al tercer día. Respecto a los °Brix presento un comportamiento regular partiendo de 22 °Brix y llegando hasta 8 °Brix.

Descriptores: Bebida alcohólica, materiales y productos, procesamiento de alimentos, industria alimentaria.

ABSTRACT

The research was carried out in the laboratories of the Technical University of Manabí (UTM) extension Chone, with the objective of monitoring the alcoholic fermentation process of four fruit liquors (passion fruit -Passiflora edulis-, Orange-Citrus cinensis-, tangerine -Citrus nobilis, and Citrus maxim) handcrafted. The parameters evaluated are governed by European regulations for wines and include parameters such as pH, sugar, alcohol content; yeast development and temperature. The results related to the parameters such as pH, density and temperature did not reflect differences in the analysis, their behavior being very similar; However, in the behavior of the yeasts in the grapefruit grape juice, I present an early development on the first day and in the other three musts it reaches the maximum development on the third day. Regarding the ° Brix I present a regular behavior starting from 22 ° Brix and reaching up to 8 ° Brix.

Descriptors: Alcoholic beverages, materials and products, food processing, food industry.

INTRODUCCIÓN

Se conoce como vino aquella bebida fermentada (fermentación alcohólica) que procede estrictamente de la Vid (uva). Esta bebida existe de épocas que datan del periodos a.C. la cual era una bebida de privilegiados que solo podían acceder reyes, políticos, altas dignidades y religiosos. (Oicornell & Melero, 2012).

Los productos de cítricos (Naranja, Mandarina y Toronja) y Maracuyá resultan para el Cantón Chone la principal actividad productiva del sector agrícola que permite el sustento para centenares familias manabitas y chonense. Entre los aspectos de esta realidad también acompaña la desvaloración del producto cuando los niveles de

producción son altos, derivando en la mayoría de casos en dejarlas en el árbol o por que no justifica la inversión en mano de obra. (El Diario, 2017)

La producción de vinos de frutas es una de las alternativas que ofrece a más de generar valor agregado aprovechar las propiedades nutricionales para conservar y acceder al consumidor. Técnicamente el vino de fruta se obtiene a partir de la fermentación alcohólica de un zumo frutal que diferente a la uva. (Melo & Vega, 2016).

Las operaciones de producción de un sistema artesanal de producción generalmente constan de: recepción de materia prima; lavado; extracción de jugo; preparación de mosto; fermentación; trasiego y filtrado; y, envasado.

El proceso de fermentación alcohólica se lo puede definir como una bioreacción en la que se convierten los azúcares en OH (alcohol) y CO2 (dióxido de carbono), por acción de levaduras, especialmente Saccharomyces cerevisiae. (Vázques & Dacosta, 2007).

Alguno delos parámetros evaluados en los procesos fermentativos contemplan temperatura, pH, nutrición y microorganismos, concentración de azúcar y alcohol (Guevara, 2003). Lo que de forma general busca es mantener las cualidades físicas, químicas y organolépticas de un producto de calidad.

La investigación tuvo por objetivo describir el Monitoreo del proceso fermentativo de cuatro licores de frutas (Passiflora edulis, Citrus cinensis, Citrus nobilis y Citrus máxima) elaborados artesanalmente en el cantón Chone de la provincia de Manabí.

METODOLOGÍA

Materiales y Métodos

Este monitoreo se desarrolla desde el momento qué está preparado el mosto colocado en el fermentador, por ello partimos del proceso de producción y continuamos con las técnicas aplicadas en el monitoreo.

Etapas del proceso de producción

- 1. **Recepción:** en esta operación se selecciona las de mejor calidad, que no presente lesiones por manipulación u otra afección física o biológica.
- 2. **Lavado:** se utilizó hipoclorito de sodio a 1 ppm, con esto se elimina residuos y patógenos.

- 3. Preparación de la fruta y extracción del jugo: se pelan las frutas en el caso de los cítricos y en el caso del maracuyá se divide por la mitad extrayendo la pulpa en los cuatros casos. Para el caso de los cítricos se utiliza un extractor manual o industrial y en el caso de maracuyá un tamiz o despulpadora industrial. La pulpa extraída es sometida a un proceso de pasteurización lenta 65°C por 30 minutos para evitar oscurecimiento y garantizar sabor, olor y color característico. En el caso del maracuyá se diluye con agua hasta alcanzar un pH de 2,7 ya que por lo general su pH es menor ya que su acidez es mayor.
- 4. **Preparación del mosto**: Al jugo obtenido en la etapa anterior se adiciona una solución de agua azucarada al 30%, levadura al 10% en relación al mosto.
- 5. Fermentación: para el fermentador tipo artesanal se utilizó un tanque de PVC oscuro con capacidad de 25 litros con tapa estrecha llenando con solo 20 litros de mosto y colocando una trampa de agua, para evitar oxidación y se produzca vinagre. Los análisis se realizaron diariamente a la misma hora. La mezcla se dejó fermentar, por 6 días para los cuatro casos.

Análisis bromatológicos

Porcentaje de Alcohol. – El grado alcohólico corresponde al número de litros de alcohol etílico que están en cien litros de vino, medidos ambos volúmenes a 20°C de temperatura. Usando la técnica picnometría a temperatura ambiental. Una vez obtenido el valor se revisa la tabla referencial.

Densidad. - Para evaluar la densidad se utilizó un densímetro que dio resultados en unidades de masa/volumen.

Azúcar por aerómetro. – El aerómetro se basa en el principio de Arquímedes, que sostiene que todo cuerpo sumergido en líquido evidencia un empuje hacia la superficie de igual la masa del líquido desalojado; es así que se sumerge un aerómetro calibrado generalmente (Giraldo, 2013). En la industria del vino permite calcular el alcohol potencial, y por medio del uso del aerómetro se mide (escala Baumé). Un grado Baumé tiene una equivalencia de 17 gramos de azúcar por litro o peso potencial del mosto siendo conceptos equivalentes por que 17 gramos de azúcar en un litro de mosto

producen un grado de alcohol. (Rojas, 2012). Los equipos utilizados fueron el aerómetro, agua destilada y probeta.

Refractometría. La concentración del azúcar medido en grados Brix (°B) indica el grado alcohólico potencial que se puede obtener de la fruta, es así que mayor concentración de azúcar garantiza mejores condiciones para la vinificación, ya que brindaran un mayor grado de alcohol. (Centro Tecnológico de la Vid y el Vino, 2010) Su determinación se basa en la refracción de la luz natural y concentración de solutos ya que es la densidad que tiene (a 20° C) una solución de sacarosa al 1 %, y a esta concentración corresponde un índice de refracción (IR). El IR de un medio es el cociente entre la velocidad de la luz en el vacío (3.108 m/s) y la velocidad de la luz en ese medio. (Kruss Optronic, 2013; Rojas, 2012) Se utilizó un refractómetro para evaluar la muestra, agua destilada para lavar el equipo y tela especial para limpiar.

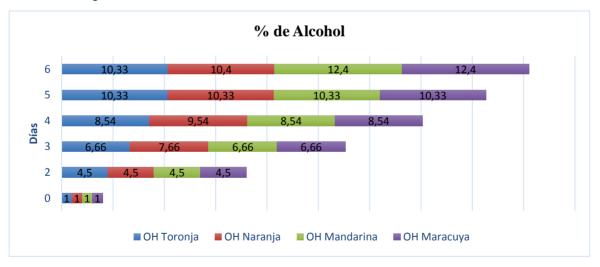
Crecimiento de levaduras. Los vinos pueden ser afectado por mohos y bacterias, influyendo directamente sobre el color y su sabor estropeándolo, sin embargo, las levaduras ayudan a la fermentación del vino, pero es importante tener un control para esto se aplicó el método Koch el cual se emplea para el "recuento bacteriano" o "recuento vital" de los microorganismos vivos como mohos, levaduras o bacterias. (Volcy, 2008)

Los materiales utilizados fueron: cultivo selectivo, placas Petri, azas de siembra, estufa, pinzas, vasos de precipitación, balanza analítica, agua destilada, contado de colonias y pipeta.

Potencial de Hidrógeno. - Los vinos son una mezcla de ácidos, más o menos salificados dependiendo de su pKa, de la composición del suelo de origen, del varietal, del grado de maduración de las frutas, de la condición del clima variara esta característica. Se valora esta propiedad por medio de un potenciómetro. (Fundación para la Cultura del Vino, 2005)

Temperatura del Mosto. Es un factor físico que afecta la actividad enzimática, presentes en los procesos de producción del vino. Estas enzimas pueden afectar el aroma por medio de la oxidación y fomentar la degradación de la masa de uvas en el proceso de maceración. También afecta de los procesos metabólicos de los microorganismos vivos, como bacterias, levaduras y hongos. El control de temperatura

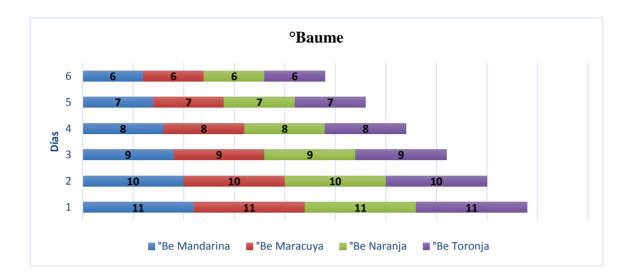
puede permitir la aceleración de los procesos enzimáticos y microbiológicos las reacciones no se dan a 0°C. Por tal su control puede aportar características específicas al producto final. (Werner & Rauhut, 2009)


El método utilizado comprende la utilización de un termómetro digital que mide en °C, y los materiales utilizados comprenden además de lo expresado un vaso de precipitación, la muestra y agua destilada.

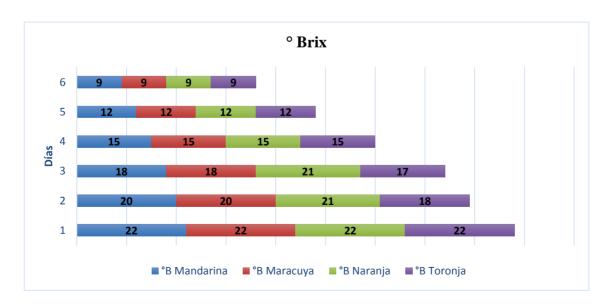
RESULTADOS

Monitoreo del proceso fermentativo

El monitoreo en el proceso fermentativo contemplo valorar por 6 días los siguientes parámetros: alcohol, azúcar (°Baume- °Brix), densidad, el desarrollo de levaduras, y temperatura del medio.


Grafico 1Evolución de grado alcohólico

Las muestras evaluadas mostraron una variación en la evolución del grado alcohólico, específicamente en el tercer y cuarto día en los casos del vino de Toronja y Naranja y mantuvieron su balance en los casos de Mandarina y Maracuyá. Sin embargo, el grado alcohólico al final es menor en los dos primeros casos (Vino de Toronja y Naranja).


Grafico 2

Comportamiento del Azúcar en el proceso medido en Grados Baumé.

La cantidad de Azúcar se puede medir por varios métodos lo Grados Baumé es uno de ellos, la variación desde su inicio fue regular en los cuatros casos de los vinos frutales evaluados. Cada °Be contiene 17 gramos de azúcar por cada 1itro de vino, es necesario referirse a una tabla de relaciones para vinos.

Grafico 4Comportamiento del Azúcar en el proceso medido en Grados Brix

El método regular para la evaluación de azucares en industria es °B, durante lo cual solo presento una pequeña variación en la Naranja y Toronja en el segundo y tercer día.

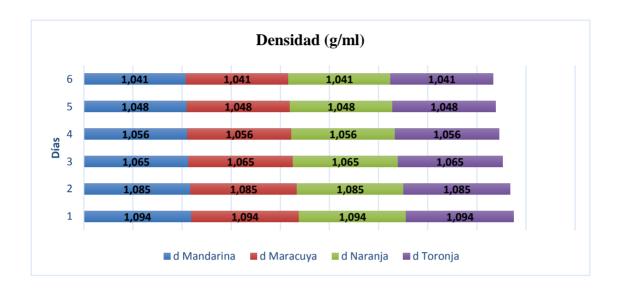
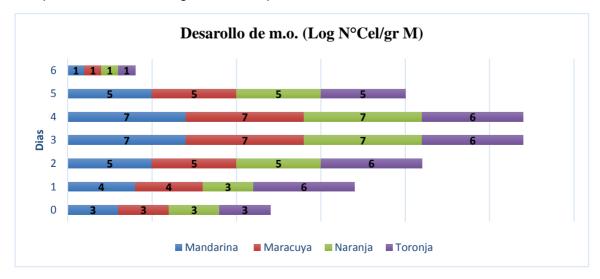
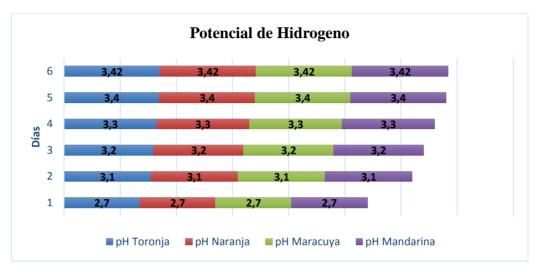



Grafico 5. Comportamiento de la densidad en el proceso medido en g/ml.


Al Convertir el azúcar en alcohol el valor de la densidad del vino disminuye, tal como se evidencia en los diferentes resultados el valor de la densidad (g/ml) disminuyo de forma regular en todos los casos, evaluados.

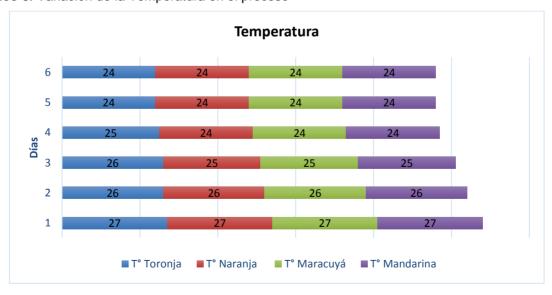

Las levaduras poseen picos altos de desarrollo, en el presente estudio fue durante el tercer día y el cuarto día de fermentación. Fue regular en todos los demás casos.

Grafico 7. Comportamiento del pH en el proceso

El pH o potencial de Hidrogeno nos refleja la acidez del medio, y a medida que aumenta la cantidad de OH disminuye dicha acidez. Su desarrollo en todos los casos mantuvo la regularidad del caso.

Grafico 8. Variación de la Temperatura en el proceso

Los procesos metabólicos de las levaduras liberan energía por los procesos bioquímicos internos (glucolisis y fermentación alcohólica) que afecta la temperatura del medio y entre más se regula la temperatura con el medio la actividad de las levaduras es menor(López & Boronat, 2013). Su comportamiento fue regular en todos los vinos evaluados. Se tomó temperatura a hora regular de media tarde (15:00 Horas).

CONCLUSIONES Y RECOMENDACIONES

- La prueba con él pesa jarabes no parece ser tan precisa ya que todos los mostos se descienden de once hasta seis grados Baumé en los mismos día
- Los grados Brix en los mostos analizados descienden de veintidós a ocho en los cinco días de toma de muestras solo el mosto de naranja se mantuvo como al inicio durante tres días, pero luego los iguala a todos
- En el mosto de Toronja el desarrollo de las levaduras es precoz comenzando desde el primer día mientras que en los mostos restantes alcanzan su número máximo al día tres
- 4. Las densidades, pH, y temperatura no mostraron diferencia en los análisis

REFERENCIAS CONSULTADAS

- 1. Agri-Nova. (s.f.). Métodos oficiales de Análisis del vino. Obtenido de Infoagro.com: http://www.infoagro.com/viticultura/vino/analisis_vinos.htm
- Centro Tecnológico de la Vid y el Vino. (2010). Monitoreo de Madurez. Obtenido de static.elmercurio.cl: http://static.elmercurio.cl/Documentos/Campo/2012/11/19/20121119153346.pdf
- 3. El Diario. (2017). Chone: El boom de los cítricos llegó. Obtenido de eldiario.ec: http://www.eldiario.ec/noticias-manabi-ecuador/431771-el-boom-de-los-citricos-llego/
- Fundación para la Cultura del Vino. (2005). Il Encuentro enológico. Obtenido de www.culturadelvino.org: http://www.culturadelvino.org/mobile/actividades/pdf/encuentros/encuentro-2005. pdf

- García, J. (2011). Técnicas analíticas para vinos. Obtenido de hop.gabsystem.com: http://shop.gabsystem.com/data/descargas/Tablas%20I-XXII.pdf
- 6. García, J., Xirau, M., & Arozin, R. (2003). Técnicas usuales de análisis en enología. Obtenido de www.usc.es/: http://www.usc.es/caa/MetAnalisisStgo1/enologia.pdf
- 7. Giraldo, E. (2013). Validación de una metodología para determinación de grado alcoholimétrico o por densimetría electrónica. Antioquia la más Educada, 1-10.
- 8. Guevara, M. (2003). Establecimiento de variables críticas, parámetrs de control y análisis de procesos productivos de la industria licorera de Caldas. Tesis de Grado. Universidad Nacional de Colombia: Manizales.
- 9. Kruss Optronic. (2013). Refractómetro Medición Brix en la industria de bebidas y zumos. Obtenido de Kruss Optronic: https://www.kruess.com/documents/Applikationsberichte/AP130710_001_Medicio n Brix en la industria de bebidas ES.pdf
- 10. López, J., & Boronat, R. (2013). Estudio de la inhibición de la respiración/fermentación en células de levadura por fluoruro de sodio. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 133-138.
- 11. Melo, L., & Vega, J. (2016). Investigación de mercado para determinar el grado de aceptación de una empresa productora y comercializadora de vinos de frutas en la ciudad de Ocaña. Tesis de Grado. Universidad de Paula Santander Ocana: Ocaña.
- 12. Oicornell, R., & Melero, J. (2012). Historia del cultivo de la vid y el vino; su expresión en la Biblia. Dialnet, 217-247.
- 13. Rojas, R. (2012). Cuestiones enológicas para sumilleres. Obtenido de Blog de Vino y Gastronomía: https://cronicasgastronomicas.wordpress.com/tag/gradosbaume/
- 14. Tenorio, M., Aparicio, I., Prádena, J., Garcia, M., Pérez, M., Redondo, A., . . . Zapata, M. (2014). EL vino y su análisis. Madrid. Documento del Departamento de Nutrición y Bromatología: Universidad Complutense de Madrid.
- 15. Vázques, H., & Dacosta, O. (2007). Fermentación alcohólica: Una opción para la producción de energía renovable a partir de desechos agrícolas. Investigación y Tecnología VII, 249-259.

- 16. Volcy, C. (2008). Génesis y evolución de los postulados de Koch y su relación con la fitopatología. Una revision. Scielo, 107-115.
- 17. Werner, M., & Rauhut, D. (2009). Control de temperatura. Revista de Vinicultura y Enología, 1-3.

REFERENCES CONSULTED

- 1. Agri-Nova (s.f.). Official methods of Wine Analysis. Obtained from Infoagro.com: http://www.infoagro.com/viticultura/vino/analisis_vinos.htm
- 2. Technological Center of the Vine and the Wine. (2010). Maturity Monitoring Obtained from static.elmercurio.cl: http://static.elmercurio.cl/Documentos/Campo/2012/11/19/20121119153346.pdf
- 3. The newspaper. (2017). Chone: The citrus boom arrived. Obtained from eldiario.ec: http://www.eldiario.ec/noticias-manabi-ecuador/431771-el-boom-de-los-citricos-llego/
- Foundation for the Culture of Wine. (2005). II Enological Encounter. Obtained from www.culturadelvino.org: http://www.culturadelvino.org/mobile/actividades/pdf/encuentros/encuentro_2005. pdf
- García, J. (2011). Analytical techniques for wines. Obtained from hop.gabsystem.com: http://shop.gabsystem.com/data/descargas/Tablas%20I-XXII.pdf
- 6. García, J., Xirau, M., & Arozin, R. (2003). Usual analysis techniques in oenology. Retrieved from www.usc.es/: http://www.usc.es/caa/MetAnalisisStgo1/enologia.pdf
- 7. Giraldo, E. (2013). Validation of a methodology for determination of alcoholimetric grade or electronic densimetry. Antioquia the most educated, 1-10.
- 8. Guevara, M. (2003). Establishment of critical variables, control parameters and analysis of production processes of the liquor industry in Caldas. Thesis. National University of Colombia: Manizales.
- Kruss Optronic. (2013). Refractometer Brix measurement in the beverage and juice industry. Obtained from Kruss Optronic: https://www.kruess.com/documents/Applikationsberichte/AP130710_001_Medicion n Brix en la industria de bebidas ES.pdf

- 10.López, J., & Boronat, R. (2013). Study of the inhibition of respiration / fermentation in yeast cells by sodium fluoride. Eureka Magazine on Science Teaching and Dissemination, 133-138.
- 11. Melo, L., & Vega, J. (2016). Market research to determine the degree of acceptance of a company producing and selling fruit wines in the city of Ocaña. Thesis. University of Paula Santander Ocana: Ocaña.
- 12. Oicornell, R., & Melero, J. (2012). History of the cultivation of the vine and the wine; Your expression in the Bible. Dialnet, 217-247.
- 13. Rojas, R. (2012). Oenological issues for sommeliers. Obtained from Wine and Gastronomy Blog: https://cronicasgastronomicas.wordpress.com/tag/grados-baume/
- 14. Tenorio, M., Aparicio, I., Prádena, J., Garcia, M., Pérez, M., Redondo, A.,. . . Zapata, M. (2014). EL came and its analysis. Madrid. Document of the Department of Nutrition and Bromatology: Universidad Complutense de Madrid.
- 15. Vázques, H., & Dacosta, O. (2007). Alcoholic fermentation: An option for the production of renewable energy from agricultural waste. Research and Technology VII, 249-259.
- 16. Volcy, C. (2008). Genesis and evolution of Koch's postulates and their relationship with phytopathology. A review. Scielo, 107-115.
- 17. Werner, M., & Rauhut, D. (2009). Temperature control. Wine and Winemaking Magazine, 1-3.

©2019 por el autor. Este artículo es de acceso abierto y distribuido según los términos y condiciones de la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/).