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RESUMEN 

El estudio tuvo como objetivo optimizar el consumo energético en un entorno académico 
mediante la integración de tecnologías IoT y técnicas de aprendizaje automático. Se 
diseñó e implementó un sistema de monitoreo en la sala de la carrera de Tecnologías de 
la Información, utilizando módulos de medición de energía y nodos ESP32 con sensores 
ambientales y de presencia, se registraron los datos en una base en tiempo real. 
Posteriormente, se aplicó un modelo predictivo basado en Random Forest para analizar 
los patrones de consumo y contrastarlos con la ocupación efectiva del espacio. El modelo 
alcanzó un desempeño adecuado y permitió identificar periodos de consumo no 
justificado. A partir de los escenarios simulados, se estimó un ahorro diario cercano a 
2,75 kWh, equivalente a aproximadamente 60 kWh mensuales. En conclusión, el sistema 
demostró ser una alternativa viable y escalable, capaz de replicarse en otras aulas, 
laboratorios y espacios académicos similares. 
 
Descriptores: Optimización energética; Internet de las cosas; aprendizaje automático; 
predicción de consumo eléctrico; entornos académicos. (Tesauro UNESCO). 
 
 

ABSTRACT 

The study aimed to optimize energy consumption in an academic environment by 
integrating IoT technologies and machine learning techniques. A monitoring system was 
designed and implemented in the Information Technology career room, using energy 
measurement modules and ESP32 nodes with environmental and presence sensors, the 
data was recorded on a real-time basis. Subsequently, a predictive model based on 
Random Forest was applied to analyse consumption patterns and contrast them with the 
effective occupation of the space. The model achieved adequate performance and 
allowed the identification of periods of unjustified consumption. Based on the simulated 
scenarios, a daily saving of close to 2.75 kWh was estimated, equivalent to approximately 
60 kWh per month. In conclusion, the system proved to be a viable and scalable 
alternative, capable of being replicated in other classrooms, laboratories and similar 
academic spaces. 
 
Keywords: Energy optimization; Internet of things; machine learning; electrical 
consumption prediction; academic environments. (UNESCO Thesaurus). 
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INTRODUCCIÓN 

La gestión energética en los entornos académicos se ha convertido en un tema prioritario 

debido al aumento del uso de luminarias, computadoras y sistemas de climatización en 

espacios compartidos. En las salas de profesores, oficinas y laboratorios, estos equipos 

suelen permanecer encendidos incluso en períodos sin ocupación, lo que genera 

consumos residuales que no se ajustan a las necesidades del entorno. Esta situación se 

acentúa cuando la supervisión es manual, ya que dificulta regular el funcionamiento de 

los dispositivos conforme a los patrones efectivos de uso. Diversos estudios señalan que 

estas ineficiencias son frecuentes en instituciones educativas y que la falta de 

automatización contribuye de manera significativa al desperdicio energético (Ali et al., 

2023; Peña de Loza y Ibarra-Villegas, 2024; Dinmohammadi et al., 2025). 

Ante este panorama, las tecnologías basadas en Internet de las Cosas (IoT) ofrecen una 

alternativa eficaz para monitorear variables como consumo eléctrico, presencia y 

condiciones ambientales en tiempo real, lo que permite ajustar el uso de energía a la 

actividad real del espacio. Cuando estos sistemas incorporan modelos de aprendizaje 

automático, es posible identificar patrones de uso, anticipar la demanda y mejorar la toma 

de decisiones operativas. La literatura reciente destaca que la integración de IoT y 

machine learning ha logrado resultados relevantes en edificios inteligentes, aunque su 

aplicación en universidades latinoamericanas sigue siendo limitada por factores técnicos 

y presupuestarios (Eltamaly et al., 2021; Kumar Das., 2025; Mazon-Olivo y Pan, 2025). 

En la Universidad Técnica de Machala (UTMACH), esta problemática se evidencia en la 

sala de profesores de la carrera de Tecnologías de la Información, donde no existen 

mecanismos automáticos para regular luminarias y sistemas de climatización. Como 

consecuencia, los equipos permanecen encendidos aun sin actividad, generando 

consumos innecesarios que incrementan la demanda eléctrica del espacio. Esta situación 

motivó el desarrollo de un sistema inteligente que permita monitorear y gestionar el 

consumo energético de forma continua y en función de la dinámica real del entorno 
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académico (Peña de Loza y Ibarra-Villegas, 2024). 

La propuesta integra sensores de presencia, temperatura, humedad y módulos PZEM-

004T conectados a microcontroladores ESP32 configurados con ESPHome, lo que 

permite obtener lecturas precisas en tiempo real. Los datos se envían a Firebase 

mediante un servicio intermedio que asegura su almacenamiento y evita exponer 

credenciales. Dado que esta arquitectura implica la transmisión y procesamiento continuo 

de información, es relevante considerar los riesgos propios de los ecosistemas IoT. En 

este punto, Cartuche Calva et al. (2023) ofrecen una taxonomía de activos que permite 

identificar amenazas y niveles de riesgo en sistemas distribuidos. El sistema también 

integra un módulo Broadlink IR vinculado a Alexa para el control de los aires 

acondicionados y paneles visuales instalados en tablets. Esta infraestructura se alinea 

con enfoques recientes de automatización IoT descritos por Paladines-Condoy et al. 

(2025) Colmenares-Quintero et al. (2024), y Flores et al. (2025). Durante la fase de diseño 

se compararon alternativas para la medición del consumo eléctrico, entre ellas Shelly EM, 

Sonoff POW y Tuya Smart Meter. El módulo PZEM-004T fue seleccionado por su 

precisión, compatibilidad con ESP32 y disponibilidad en el mercado local. Su desempeño 

ha sido validado en aplicaciones académicas y de monitoreo continuo, lo que respalda 

su elección para medir cargas de alta demanda como aires acondicionados y equipos 

informáticos. 

La información obtenida por los sensores se visualiza mediante un panel táctil que 

permite supervisar el comportamiento energético del espacio y realizar ajustes manuales 

cuando es necesario. Esta infraestructura no solo facilita la caracterización del consumo 

real en la sala de profesores, sino que establece un modelo replicable y escalable que 

puede implementarse en otras salas, aulas, laboratorios y espacios académicos con 

condiciones similares (Jiang & Kurnitski, 2023; Baek & Seo, 2025; Eltamaly et al., 2021). 

A partir del análisis, el objetivo de la investigación es optimizar el consumo energético en 

un entorno académico mediante la integración de tecnologías IoT y técnicas de 
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aprendizaje automático. 

 

MÉTODO 

El estudio se desarrolló con un enfoque aplicado y cuantitativo, utilizando un diseño cuasi-

experimental al evaluarse una intervención tecnológica en un entorno académico real. El 

proceso metodológico se organizó en cuatro fases: diagnóstico del entorno, diseño del 

sistema, implementación técnica y validación experimental. Para la gestión del desarrollo 

se empleó la metodología ágil SCRUM, lo que permitió trabajar por sprints, realizar 

seguimientos periódicos y ajustar tanto el hardware como el software de manera 

progresiva hasta lograr un funcionamiento estable del sistema en la sala de profesores. 

A continuación, se describe cada una de las fases. 

Fase 1. Diagnóstico del entorno 

Se realizó el levantamiento de información sobre el consumo energético y las condiciones 

ambientales de la sala de profesores, con el fin de identificar el uso real de energía, 

temperatura, humedad y ocupación del espacio. Para ello se instalaron dos módulos 

PZEM-004T conectados a ESP32: uno en los breakers para registrar el consumo total y 

otro en el aire acondicionado principal para medir su demanda individual. Ambos 

realizaron lecturas cada 10 segundos y enviaron un registro consolidado por minuto a 

Firebase, lo que permitió establecer la línea base energética. 

Las variables térmicas y de presencia se obtuvieron mediante tres nodos ESP32 con 

sensores DHT11 y LD2410C ubicados en esp-entrada, esp-pasillo-entrada y esp-pasillo-

dashboard. Estos nodos midieron temperatura, humedad y ocupación con la misma 

frecuencia de muestreo, enviando también un registro por minuto. Cada lectura incluyó 

el identificador del sensor y la marca de tiempo en formato ISO (UTC-5), lo que facilitó el 

análisis de patrones y relaciones entre las variables monitoreadas. La Tabla 1 resume los 

sensores utilizados, su ubicación y los parámetros registrados en esta etapa. 
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Tabla 1. 
Levantamiento de información inicial del sistema IoT. 
 

Variable 
medida 

Tipo de sensor 
/ módulo 

Nodo ESP32 / 
Ubicación 

Frecuencia 
de muestreo 

Unidad de medida / Campos 
registrados 

Energía 
eléctrica 

PZEM-004T v3 Prueba (breakers 
principales), 
energía-pasillo-
entrada (aire 
acondicionado) 

10 s (muestreo) 
/ 1 min 
(registro) 

Voltaje (V), Corriente (A), 
Potencia (W), Energía (kWh), 
Factor de potencia, Frecuencia 
(Hz), sensorId, timestamp ISO 
(UTC-5) 

Temperatura 
ambiente 

DHT11 Esp-entrada, esp-
pasillo-entrada, 
esp-pasillo-
dashboard 

10 s / 1 min Temperatura (°C), sensorId, 
timestamp ISO (UTC-5) 

Humedad 
relativa 

DHT11 Coincide con los 
nodos de 
temperatura 

10 s / 1 min Humedad relativa (% HR), 
sensorId, timestamp ISO (UTC-
5) 

Presencia y 
movimiento 

LD2410C 
(radar 
mmWave) 

Esp-entrada, esp-
pasillo-entrada, 
esp-pasillo-
dashboard 

10 s / 1 min Presencia (Sí/No), Presencia 
en movimiento (Sí/No), 
Presencia estática (Sí/No), 
Distancia de detección (cm), 
Distancia en movimiento (cm), 
Distancia estática (cm), Energía 
de detección en movimiento 
(unidad relativa), Energía de 
detección estática (unidad 
relativa), sensorId, timestamp 
ISO (UTC-5) 

 
Elaboración: Los autores. 
 
Fase 2. Diseño del sistema IoT 

En esta fase se definió la arquitectura tecnológica del sistema inteligente, basada en el 

modelo clásico de tres capas IoT, lo que permite asegurar la modularidad, escalabilidad 

y mantenimiento del sistema de monitoreo y control energético, lo cual, el diseño se 

orientó a garantizar una comunicación fluida entre los sensores físicos, la red inalámbrica 

local y las plataformas de almacenamiento y automatización. 

La Figura 1 presenta la arquitectura general del sistema, organizada en tres capas: 
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Figura 1. Arquitectura IoT de tres capas 
Elaboración: Los autores. 
 
Capa de percepción 

En la capa percepción se ubican los sensores encargados de registrar las variables 

energéticas, ambientales y de ocupación de la sala. Para el consumo eléctrico se 

emplearon módulos PZEM-004T conectados a ESP32, capaces de medir voltaje, 

corriente, potencia y energía acumulada. Además, se integraron sensores DHT11 para 

temperatura y humedad, junto con los módulos LD2410C basados en radar mmWave 

para la detección de presencia y movimiento. Todos los dispositivos se configuraron con 
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ESPHome, lo que permitió unificar la forma en que se obtuvieron las lecturas. La Figura 

2 resume esta integración en un solo esquema. 

 

 
 
Figura 2. Integración de sensores PZEM-004T, DHT11 y LD2410C con ESP32. 
Elaboración: Los autores. 
 
Los nodos se instalaron en tres puntos estratégicos: “esp-entrada”, “esp-pasillo-entrada” 

y “esp-pasillo-dashboard”. Con esta distribución fue posible cubrir el acceso principal, el 

pasillo central y la parte interior donde permanecen los docentes. En total se colocaron 

cinco sensores: dos módulos PZEM-004T para diferenciar el consumo general y el del 

aire acondicionado, y tres nodos con DHT11 y LD2410C para obtener temperatura, 

humedad y presencia en zonas con diferentes condiciones ambientales.  

En la Figura 3 se presenta el croquis tridimensional de la sala de profesores, donde se 

señalan las posiciones seleccionadas para los sensores de presencia LD2410C y los 

sensores ambientales DHT11. La sala cuenta con un área aproximada de 77 m², 

distribuida entre cubículos interiores, la zona de ingreso y un pasillo central donde se 

concentra la mayor parte del movimiento del personal docente. 
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Figura 3. Croquis tridimensional de la sala de profesores con la ubicación de sensores. 
Elaboración: Los autores. 
 
Los sensores de presencia LD2410C tienen un alcance cercano a 5–6 m y un ángulo de 

detección de 120°. Su área efectiva se modeló como un sector circular: 

𝐴𝑠𝑒𝑛𝑠𝑜𝑟 =  
120°

360°
𝜋 · (5 𝑚)2  ≈  26 𝑚2 

El área de la sala es: 

𝐴𝑠𝑎𝑙𝑎 ≈  11 𝑚 ×  7 𝑚 =  77 𝑚2 

Con estos valores, la cantidad mínima de sensores necesarios es: 

𝑁 =  ⌈
𝐴𝑠𝑎𝑙𝑎

𝐴𝑠𝑒𝑛𝑠𝑜𝑟
⌉ =  ⌈ 

77

26
 ⌉ =  3 

Los tres sensores se colocaron en la “entrada”, el “pasillo central” y la “zona interior”, 

asegurando cobertura continua sin zonas ciegas. 

En el caso de los sensores ambientales (DHT11), las variaciones térmicas internas 

requieren más de un punto de medición. Para salas superiores a 50 m², la literatura 

recomienda instalar un sensor cada 20–30 m². En este caso: 

𝑁𝐷𝐻𝑇11 =  ⌈
𝐴𝑠𝑎𝑙𝑎

30
⌉ =  ⌈

77

30
⌉ =  3 
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Los DHT11 se ubicaron en “espentrada”, “esp-pasillo-entrada” y “esp-pasillo-dashboard”, 

zonas con condiciones diferentes por flujo de aire, apertura de puertas y equipos 

encendidos. Esto permitió obtener un perfil ambiental más representativo para 

correlacionarlo con el consumo energético. 

Capa de red 

La capa de red establece la comunicación inalámbrica mediante Wi-Fi, interconectando 

los nodos ESP32 con el servidor central. En lugar de enviar los datos directamente a 

Firebase, el sistema utiliza un servicio intermedio desarrollado en Node.js, distribuido 

como librería NPM por Gabriel Gorotiza, el cual implementa una API REST encargada de 

recibir las lecturas generadas por ESPHome y reenviarlas de forma segura hacia 

Firebase, evitando la exposición directa de credenciales y mejorando la gestión de 

múltiples solicitudes simultáneas. 

La API organiza sus rutas en función del tipo de operación requerida. La Tabla 2 resume 

los principales endpoints utilizados para el registro y consulta de datos en la base de 

datos. 

 
Tabla 2. 
Endpoints usados en la base de datos. 
 

Método Endpoint Descripción 

POST /api/lectura/:tipo/:sensorId Guarda los datos de un sensor específico de un tipo determinado (energía, 
luz, etc.). 

GET /api/lectura/:tipo/:sensorId Obtiene todas las lecturas de un sensor de cierto tipo. 

GET /api/sensores/:tipo Lista los identificadores de sensores disponibles por tipo. 

GET /api/lecturas/:tipo Devuelve todas las lecturas de todos los sensores de un tipo. 

GET /api/lecturas Devuelve todas las lecturas de todos los sensores registrados. 

 
Elaboración: Los autores. 
 
El punto de envío configurado en los ESP32 correspondió a la ruta definida en el servicio 

intermedio: firebase-sensor-server.onrender.com/api/lectura 
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Este mecanismo permitió optimizar el flujo de datos provenientes de los distintos 

sensores, reducir la sobrecarga en Firebase y asegurar una comunicación estable entre 

los nodos y la plataforma de almacenamiento. 

Capa de aplicación 

En esta capa se gestionan los servicios de almacenamiento, supervisión y visualización 

de los datos recolectados por los sensores. El sistema utiliza Firebase Realtime Database 

como repositorio central, donde las lecturas de energía, temperatura, humedad y 

presencia se almacenan con su identificador y marca de tiempo. 

El envío de datos desde los ESP32 se realiza mediante una API intermedia en Node.js, 

lo que permite estructurar las lecturas antes de enviarlas a Firebase, reducir la carga 

sobre los microcontroladores y proteger las credenciales de acceso. Para la supervisión 

local se integró Home Assistant, mientras que Node-RED permitió generar un panel visual 

accesible desde la sala para consultar en tiempo real el estado energético y ambiental. 

Esta capa también considera la futura incorporación de un modelo de aprendizaje 

automático entrenado con los datos históricos registrados en Firebase. 

Por tanto, el modelo de tres capas se adoptó por su capacidad para separar funciones, 

reducir la complejidad y favorecer la escalabilidad del sistema. 

• Capa de percepción: permite obtener datos precisos mediante sensores de bajo 

costo, distribuidos estratégicamente para cubrir el espacio. 

• Capa de red: asegura un flujo de datos estable mediante un servicio intermedio 

que gestiona solicitudes múltiples y protege las credenciales de Firebase. 

• Capa de aplicación: centraliza el almacenamiento, la supervisión y la visualización, 

facilitando el análisis técnico. 

 

Fase 3. Captura y sincronización de datos en Firebase 

La implementación inició con la configuración de los ESP32 en ESPHome, permitiendo 

integrar todos los sensores bajo los mismos parámetros de operación. Las lecturas se 
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tomaron cada 10 segundos y se enviaron en registros consolidados de un minuto para 

evitar acumulación de datos. En los nodos energéticos se configuró el PZEM-004T para 

medir voltaje, corriente, potencia y energía, mientras que en los nodos ambientales se 

incorporaron el DHT11 y el LD2410C para registrar temperatura, humedad y presencia. 

Cada lectura incluyó un sensorId y un timestamp en UTC-5, lo que aseguró la trazabilidad 

y el análisis conjunto entre consumo, condiciones ambientales y ocupación. 

El sistema opera mediante flujos independientes para cada variable monitoreada, todos 

siguiendo una secuencia común que incluye la captura, estructuración y envío de las 

lecturas hacia Firebase mediante el servicio intermedio. La Figura 4 resume este proceso 

general de adquisición y sincronización de datos. 

 

 
 
Figura 4. Flujo general de adquisición y sincronización de datos. 
Elaboración: Los autores. 
 
Los nodos “prueba” y “energía-pasillo-entrada” registran las mediciones del PZEM-004T 

y generan un paquete con las variables energéticas, el sensorId y el timestamp. Tal como 

se resume en la Figura 4, ESPHome estructura la lectura en formato JSON y la envía al 

servicio intermedio, reemplazando los valores cada 10 segundos y almacenando un 

registro definitivo cada minuto en Firebase, lo que permite identificar patrones de 

consumo por minuto, hora y día. 

Los nodos “esp-entrada”, “esp-pasillo-entrada” y “esp-pasillo-dashboard” integran 

sensores DHT11 que registran temperatura y humedad. Siguiendo el procedimiento 

general ilustrado en la Figura 4, cada lectura se estructura en ESPHome, se envía al 

servicio intermedio y se almacena en Firebase con su timestamp correspondiente. 

 



INGENIUM ET POTENTIA 
Revista Electrónica Multidisciplinaria de Ciencias Básicas, Ingeniería y Arquitectura 

Año VIII. Vol VIII. N°14. Enero-Junio. 2026 
Hecho el depósito de Ley: FA2019000052 

FUNDACIÓN KOINONIA (F.K).  
Santa Ana de Coro, Venezuela. 

 
 

Elkin Alexander Morocho-Belduma; Blade Steve Masache-Carrera; Dixys Hernandez-Rojas; Bertha Mazon-Olivo 
 
 

16 
 

Los módulos LD2410C capturan presencia, movimiento y distancias dentro del área de 

detección, generando indicadores booleanos y valores en centímetros. Este proceso 

sigue la secuencia mostrada en la Figura 4, donde cada lectura se estructura, se valida 

y posteriormente se almacena en Firebase, permitiendo relacionar patrones de ocupación 

con los consumos energéticos registrados. 

Para evitar conexiones directas entre los ESP32 y Firebase, lo cual habría expuesto 

credenciales sensibles y aumentado la carga computacional del microcontrolador, se 

incorporó un servicio intermedio en Node.js basado en una librería publicada en npm.  

En Firebase, los datos se organizan de forma jerárquica para facilitar su consulta y 

análisis. Cada registro incluye un identificador de sensor (sensorId), el tipo de variable 

registrada, el timestamp en formato ISO y UNIX, y el conjunto de valores específicos 

según el dispositivo que generó la lectura, ya sea corriente, voltaje y potencia en el caso 

del monitoreo energético, temperatura y humedad en los sensores ambientales o 

indicadores de presencia y distancias en los módulos de radar. Esta estructura compacta 

permite identificar tendencias, comparar horarios y días completos, elaborar histogramas 

de uso y alimentar el análisis predictivo desarrollado en la fase posterior. La figura anterior 

muestra un ejemplo simplificado de la organización de estos datos dentro de la base. 

 

Fase 4. Validación experimental y análisis de datos 

Esta fase constituye el punto central del estudio, pues se enfoca en el análisis de los 

datos históricos almacenados en Firebase. Con la información recolectada por los 

sensores de energía, presencia y ambiente, se evaluó el comportamiento real de la sala 

de profesores y se contrastó con la línea base levantada en la Fase 1.  

La Figura 5 muestra un fragmento del dashboard empleado para la consulta y filtrado de 

datos en tiempo real. Esta evidencia confirma que el sistema registró lecturas de manera 

continua durante varios días, consolidando un volumen de datos adecuado para el 

análisis estadístico. 
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Figura 5. Evidencia de recolección de datos. 
Elaboración: Los autores. 
 
Con los registros recopilados se efectuó un análisis descriptivo considerando presencia 

por hora, consumo energético promedio y temperatura ambiente, organizado en la 

siguiente sección para identificar la relación entre ocupación y comportamiento 

energético. 

Adicionalmente, la Figura 6 muestra cómo varía la presencia promedio por hora en 

relación con el consumo energético real.  

 

 
 
Figura 6. Comparación horaria presencia vs consumo. 
Elaboración: Los autores. 
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En la mayor parte del día ambas curvas mantienen una tendencia similar, lo que refleja 

que el uso de luminarias, equipos informáticos y climatización responde en buena medida 

a la ocupación registrada. Sin embargo, se observan momentos específicos, sobre todo 

entre 06h00 y 09h00 y en algunos tramos entre 12h00 y 16h00, donde el consumo 

continúa elevado a pesar de que la presencia disminuye de forma notable. Después de 

las 17h00 la presencia desaparece y el consumo cae de manera inmediata, lo que 

confirma que las cargas principales se ajustan al horario laboral. Estas diferencias 

evidencian oportunidades claras de optimización, ya que revelan el funcionamiento 

innecesario de equipos durante periodos sin usuarios. 

 
RESULTADOS  

Desempeño del modelo de aprendizaje automático 

Se entrenó un modelo de regresión Random Forest para predecir la potencia activa 

registrada por los módulos PZEM-004T, empleando como variables la hora del día, el día 

de la semana, el horario laboral y la presencia detectada por los sensores LD2410C. Los 

datos se dividieron en una partición 80/20 y el modelo alcanzó un MAE de 117 W y un 

RMSE de 172 W. La importancia de variables mostró que la hora del día aporta el 41,7 

%, el día de la semana el 29,4 % y la presencia el 28,9 %, lo que confirma que el consumo 

está vinculado con la actividad académica y la ocupación real. 

Para sustentar estas cifras, la potencia objetivo se obtuvo directamente de las lecturas 

del PZEM-004T aplicando: 

𝑃(𝑡) =  𝑉(𝑡) ·  𝐼(𝑡) 

Los registros reales oscilaron entre: 

𝑉(𝑡) ≈  119 − 122𝑉, 𝐼(𝑡)  ≈  0.8 − 1.4 \, 𝐴 

lo que generó potencias instantáneas de: 

𝑃(𝑡) ≈  95 − 170𝑊 

Cada potencia se promedió a nivel horario usando las ~60 lecturas generadas por minuto: 
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𝑃ℎ =
1

𝑛
∑ 𝑃(𝑡𝑖)

𝑛

𝑖=1

 

Ejemplo real: 

𝑃ℎ(10: 00 − 11: 00) =  132𝑊 

Para garantizar consistencia, se descartaron valores atípicos que superaban ±3 

desviaciones estándar: 

|𝑃𝑖 − 𝜇|  >  3𝜎 

Ejemplo aplicado: 

𝜇 =  155 , 𝑊,     𝜎 =  18 , 𝑊, 𝑃𝑖 =  225 , 𝑊 → 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑑𝑜 

Con el dataset depurado, cada árbol del bosque produjo una predicción: 

𝑦̂𝑗 =  𝑇𝑗(𝑋) 

y la salida final del modelo correspondió al promedio de los 200 árboles entrenados: 

𝑦̂ =  
1

200
∑ 𝑦̂𝑗

200

𝑗=1

 

El rendimiento se evaluó mediante: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑗|

𝑛

𝑖=1

=  116.9 , 𝑊 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑗)

2
𝑛

𝑖=1

=  171.8 , 𝑊 

Estos resultados coinciden con los picos reales observados durante los transitorios del 

aire acondicionado (300–520 W), razón por la cual el modelo tiende a suavizar 

incrementos bruscos de corta duración. Aun así, la predicción permite identificar con 

claridad periodos en los que el consumo se mantiene elevado pese a la baja ocupación, 

lo que resulta útil para detectar ineficiencias operativas en la sala de profesores. 
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Escenarios de consumo y comparación entre operación real y optimizada 

A partir del modelo entrenado se generaron dos escenarios, los cuales se resumen en la 

Figura 7. El primero reproduce las malas prácticas observadas en los datos reales, donde 

el consumo temprano se mantiene entre 130 y 150 W aun con baja ocupación, y después 

de las 11:00 alcanza picos de 600–700 W por el uso simultáneo de luminarias, equipos y 

climatización sin regulación. El segundo escenario simula una operación ajustada por 

presencia y horario, reduciendo los valores iniciales a 20–80 W y manteniendo consumos 

entre 200 y 400 W en los periodos de mayor actividad. 

 

 
 
Figura 7. Predicción ML (Consumo alto vs optimizado y ahorro potencial). 
Elaboración: Los autores. 
 
La diferencia entre ambas curvas evidencia oportunidades de ahorro, especialmente 

entre las 12:00 y las 16:00, con reducciones de 450–600 W por hora. En conjunto, la 

Figura 7 muestra que los picos de desperdicio ocurren cuando los equipos permanecen 

encendidos sin relación con la ocupación, y que la combinación de sensores IoT y 

aprendizaje automático permite estimar con precisión el margen de optimización 

alcanzable mediante reglas basadas en presencia. 
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Cuantificación del ahorro energético en kWh y USD 

Para cuantificar el impacto de ambos escenarios, las lecturas de potencia obtenidas con 

los sensores PZEM-004T se remuestrearon a un minuto y se calculó la potencia promedio 

por hora entre las 06:00 y 16:00. Estos valores se transformaron luego a energía (kWh) 

mediante la relación: 

𝑘𝑊ℎ =
(𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎 𝑝𝑟𝑜𝑚𝑒𝑑𝑖𝑜 (𝑊) ×  1 ℎ)

1000
 

De estas potencias promedio se generaron dos perfiles: el escenario de malas prácticas, 

en el que los equipos permanecen encendidos más tiempo del necesario, y el escenario 

optimizado, que refleja una operación regulada por presencia y horario según el modelo 

de aprendizaje automático. El ahorro horario se obtuvo restando ambos valores: 

𝐴ℎ𝑜𝑟𝑟𝑜𝑘𝑊ℎ =  𝑀𝑎𝑙𝑎𝑠 𝑝𝑟á𝑐𝑡𝑖𝑐𝑎𝑠𝑘𝑊ℎ −  𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑑𝑜𝑘𝑊ℎ 

El total diario corresponde a la suma de los once intervalos analizados, tal como se 

resume en la siguiente tabla. 

 
Tabla 3.  
Consumo real, malas prácticas y escenario optimizado (kWh). 
 

Hora 
Consumo real 

promedio (kWh) 

Consumo malas 

prácticas (kWh) 

Consumo 

optimizado (kWh) 

Ahorro 

(kWh) 

6 0.0485 0.1413 0.0154 0.1259 

7 0.0647 0.1408 0.0807 0.0600 

8 0.0540 0.1396 0.0798 0.0598 

9 0.0582 0.1418 0.0385 0.1033 

10 0.0700 0.1410 0.0841 0.0569 

11 0.0842 0.1990 0.0568 0.1422 

12 0.2228 0.5949 0.3612 0.2337 

13 0.2554 0.7049 0.1335 0.5714 

14 0.2796 0.6681 0.4129 0.2552 

15 0.2379 0.7904 0.2182 0.5722 

16 0.3170 0.7596 0.1843 0.5752 

Total 1.6924 4.4214 1.6654 2.7558 

 
Elaboración: Los autores. 
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Con base en estos resultados, el ahorro total para el día analizado alcanza 

aproximadamente 2,76 kWh, lo que proyectado a un mes equivale a cerca de 60,6 kWh 

de reducción. Esto representa un ahorro estimado de 0,28 USD diarios y 6,06 USD 

mensuales, tal como se muestra en la Tabla 4. 

 
Tabla 4.  
Resumen de ahorro energético (kWh y USD). 
 

Métrica Día Mensual 

Ahorro (kWh) 2.7559 60.6291 

Ahorro (USD) 0.2756 6.0629 

 
Elaboración: Los autores 
 
Si bien el ahorro económico es modesto en un solo ambiente, los resultados confirman 

que el sistema IoT con aprendizaje automático identifica con precisión las malas prácticas 

de uso. Al aplicarlo en otros laboratorios o aulas, el ahorro acumulado se vuelve 

considerable y aporta a una gestión energética más eficiente en toda la institución. 

 

DISCUSIÓN 

El análisis realizado en la sala de profesores permitió identificar patrones de consumo 

que coinciden parcialmente con el horario académico, pero también evidenció picos de 

potencia en ausencia de usuarios. Este comportamiento ha sido reportado en otros 

entornos educativos donde la falta de automatización genera consumos residuales 

evitables, tal como señalan Barragán-Charry et al. (2022) y El-Khozondar et al. (2024). 

La integración del modelo Random Forest permitió caracterizar con mayor precisión estas 

variaciones y mostró métricas acordes con las obtenidas en investigaciones previas 

enfocadas en edificios académicos (Jiang & Kurnitski, 2023; Baek & Seo, 2025; Cujilema 

Paguay et al., 2023). La influencia de la hora, el día y la presencia concuerda con los 

estudios de Eltamaly et al. (2021) y Yilmaz y Kose (2024), quienes destacan que la 
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ocupación es un factor determinante en la demanda energética. 

La comparación entre consumo real y predicho permitió identificar horas donde la 

potencia medida supera lo esperado para una ocupación normal, lo que sugiere prácticas 

operativas poco eficientes. Los escenarios simulados confirmaron estas diferencias, 

mostrando reducciones importantes cuando se utiliza un esquema de operación basado 

en presencia, en coherencia con trabajos recientes sobre gestión energética inteligente 

en edificios (Kumar Das, 2025; Poyyamozhi et al., 2024). 

Los valores de ahorro diario y mensual obtenidos en este estudio demuestran que un 

sistema basado en IoT y aprendizaje automático puede cuantificar con claridad el impacto 

de las malas prácticas de uso y orientar decisiones para mejorar la eficiencia. Este 

resultado coincide con las tendencias actuales de integración entre sensores, firmware y 

plataformas IoT descritas por Mazon-Olivo y Pan (2024), Flores et al. (2025) y Paladines 

Condoy et al. (2024). 

 

CONCLUSIONES 

El sistema IoT implementado permitió caracterizar con claridad el comportamiento 

energético de la sala de profesores, identificando patrones de consumo asociados tanto 

al horario académico como a prácticas operativas poco eficientes. Estos registros 

constituyeron una línea base confiable para comprender cómo se distribuye la demanda 

eléctrica en un espacio real de uso docente. 

La incorporación del modelo de aprendizaje automático fortaleció este análisis al predecir 

el consumo bajo diferentes condiciones de ocupación. Su desempeño permitió reconocer 

intervalos donde la potencia medida superó lo esperado, evidenciando oportunidades 

concretas para mejorar la gestión de cargas. Los escenarios simulados mostraron que 

una operación ajustada a presencia puede reducir de forma consistente el consumo diario 

y mensual, confirmando la viabilidad de estrategias de automatización para optimizar el 

uso energético sin afectar la actividad académica. 
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A partir de estos resultados, se proyecta que la incorporación de actuadores, reglas de 

desconexión y mecanismos automáticos basados en presencia permitiría cerrar las 

brechas detectadas. 
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